

Zero-Information Protocols and Unambiguity in Arthur–Merlin Communication

Mika Göös

Toniann Pitassi

Thomas Watson

University of Toronto

Göös, Pitassi, Watson (Univ. of Toronto) Zero-Information & Unambiguity for AM

Communication complexity?

[Yao, STOC'79]

Communication complexity?

[Yao, STOC'79]

1	1	1	1	0	0
1	1	1	1	0	0
1	1	1	1	1	1
1	1	1	1	1	1
0	0	1	1	1	1
0	0	1	1	1	1

1	1	1	1	0	0
1	1	1	1	0	0
1	1	1	1	1	1
1	1	1	1	1	1
0	0	1	1	1	1
0	0	1	1	1	1

P

\mathbf{h}	1	1	1	1	0	0
	1	1	1	1	0	0
	1	1	1	1	1	1
	1	1	1	1	1	1
	0	0	1	1	1	1
	0	0	1	1	1	1
Ľ						7

BPP

1	1	1	1	0	0
1	1	1	1	0	0
1	1	1	1	1	1
1	1	1	1	1	1
0	0	1	1	1	1
0	0	1	1	1	1

NP

AM

AM communication

Completeness (1-inputs): W.h.p. ∃ proof that both parties accept

Soundness (0-inputs):

W.h.p. $\neg \exists$ proof that both parties accept

Communication complexity:

Length of proof string = log of the number of proof rectangles

AM in context

Long-standing open problems:

Explicit lower bounds for AMRigidity lower bounds (related to PH)

Information complexity + **AM communication**

Information complexity

Transcript of protocol leaks information about input

[CSWY01, BYJKS04, JKS03, CKS03, Gro09, Jay09, DKS12, BM13, BGPW13, BEO+13, ...]

Information complexity + **AM communication**

Information complexity

Transcript of protocol leaks information about input

UAM: Unambiguous AM

At most one accepting proof on any 1-input # "transcript" := Merlin's unique proof (only defined for 1-inputs)

Information complexity + **AM communication**

Information complexity

Transcript of protocol leaks information about input

UAM: Unambiguous AM

At most one accepting proof on any 1-input # "transcript" := Merlin's unique proof (only defined for 1-inputs)

ZAM: Zero-information protocols

Transcript independent of input—info approach fails!

Zero-information (ZAM) protocol for NAND

Communication matrix for NAND: $\{0,1\}^2 \rightarrow \{0,1\}$

Zero-information (ZAM) protocol for NAND

Augment inputs with private randomness

Zero-information (ZAM) protocol for NAND

Implication:

ZAM protocol for every function!

Theorem 1: $\forall f$: $\mathbf{ZAM}(f) \leq 2^n$

Theorem 1: $\forall f$: **ZAM**(f) \leq BranchingProgramSize(f)

Theorem 1: $\forall f$: $\mathbf{ZAM}(f) \leq \operatorname{BranchingProgramSize}(f)$ Theorem 2: $\forall f$: $\mathbf{ZAM}(f) \geq \operatorname{coNP}(f)$

Theorem 1: $\forall f$: $\mathbf{ZAM}(f) \leq \text{BranchingProgramSize}(f)$ Theorem 2: $\forall f$: $\mathbf{ZAM}(f) \geq \mathbf{coNP}(f)$ Theorem 3: $\forall f$: $\mathbf{UAM}(f) \geq \mathbf{PP}(f)$ $= \Theta(\text{discrepancy})$

Theorem 1: $\forall f$: **ZAM**(*f*) \leq BranchingProgramSize(*f*) *Theorem 2:* $\forall f$: $\mathbf{ZAM}(f) \ge \mathbf{coNP}(f)$

Theorem 3: $\forall f$: **UAM** $(f) \ge \mathbf{PP}(f) = \Theta(\text{discrepancy})$

Theorem 4: **UAM**(set-intersection) $\geq \Omega(n)$

Theorem 1:

Theorem 2:

 $\forall f$: **ZAM**(*f*) \leq BranchingProgramSize(*f*)

$$\forall f: \quad \mathbf{ZAM}(f) \ge \mathbf{coNP}(f)$$

- *Theorem 3*: $\forall f$: **UAM**(f) \geq **PP**(f) = Θ (discrepancy)
- *Theorem 4:* **UAM**(set-intersection) $\geq \Omega(n)$
- **Theorem 5*:** $\exists f$: **UAM** $(f) \ll$ **SBP** $(f) = \Theta$ (corruption)

Proof idea for $\mathbf{ZAM}(f) \leq \text{BranchingProgramSize}(f)$

Göös, Pitassi, Watson (Univ. of Toronto)

Zero-Information & Unambiguity for AM

Proof idea for $\mathbf{ZAM}(f) \leq \text{BranchingProgramSize}(f)$

Proof idea for $\mathbf{ZAM}(f) \leq \text{BranchingProgramSize}(f)$

Göös, Pitassi, Watson (Univ. of Toronto)

Zero-Information & Unambiguity for AM

This work:

We introduced restricted models ZAM and UAM that capture some of the difficulty of AM

Open problems:

Most annoying: Prove

ZAM(set-disjointness) $\geq \Omega(n)$

Close the gap:

 $\forall f : \mathbf{ZAM}(f) \le 2^n \quad \text{vs.} \quad \exists f : \mathbf{ZAM}(f) \ge n$

Göös, Pitassi, Watson (Univ. of Toronto) Zero-Information & Unambiguity for AM