Zero-Information Protocols and Unambiguity in Arthur-Merlin Communication

Mika Göös Toniann Pitassi Thomas Watson
University of Toronto

Communication complexity?

Communication complexity?

Alice
Bob

$$
x \in\{0,1\}^{n} \quad y \in\{0,1\}^{n}
$$

Compute: $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$

Models of communication

1	1	1	1	0	0
1	1	1	1	0	0
1	1	1	1	1	1
1	1	1	1	1	1
0	0	1	1	1	1
0	0	1	1	1	1

Models of communication

1	1	1	1	0	0
1	1	1	1	0	0
1	1	1	1	1	1
1	1	1	1	1	1
0	0	1	1	1	1
0	0	1	1	1	1

P

Models of communication

Models of communication

1	1	1	1	0	0
1	1	1	1	0	0
1	1	1	1	1	1
1	1	1	1	1	1
0	0	1	1	1	1
0	0	1	1	1	1

NP

Models of communication

AM communication

(1) Private coins

Alice + Bob

Merlin

(2) Proof string

Completeness (1-inputs):
W.h.p. \exists proof that both parties accept

Soundness (0-inputs):
W.h.p. $\neg \exists$ proof that both parties accept

Communication complexity:

Length of proof string
$=\log$ of the number of proof rectangles

AM in context

- Explicit lower bounds for AM
- Rigidity lower bounds (related to PH)

Information complexity + AM communication

Information complexity

Transcript of protocol leaks information about input
[CSWY01, BYJKS04, JKS03, CKS03, Gro09, Jay09, DKS12, BM13, BGPW13, BEO+13, ...]

Information complexity + AM communication

Information complexity

Transcript of protocol leaks information about input
UAM: Unambiguous AM
At most one accepting proof on any 1-input \Longrightarrow "transcript" $:=$ Merlin's unique proof (only defined for 1 -inputs)

This work:

Information complexity + AM communication

Information complexity

Transcript of protocol leaks information about input
UAM: Unambiguous AM
At most one accepting proof on any 1-input
\Longrightarrow "transcript" := Merlin's unique proof (only defined for 1 -inputs)

ZAM: Zero-information protocols
Transcript independent of input-info approach fails!

Example

Zero-information (ZAM) protocol for NAND

Communication matrix for NAND: $\{0,1\}^{2} \rightarrow\{0,1\}$

Example

Zero-information (ZAM) protocol for NAND

Augment inputs with private randomness

Example

Zero-information (ZAM) protocol for NAND

Merlin's proof is uniform in $\{\square, \square, \square, \square\}$ Independent of the 1-input!

Example

Implication:

ZAM protocol for every function!

$$
\begin{aligned}
& \text { Proof } \\
& \qquad \begin{array}{rl}
11 & \mathbf{Z A M}(\mathrm{NAND}) \leq O(1) \\
2 & \operatorname{Disj}_{n}:=\mathrm{AND}_{n} \circ \mathrm{NAND}^{n} \\
& \Longrightarrow \quad \mathbf{Z A M}\left(\text { Disj }_{n}\right) \leq O(n) \\
3 & \forall f: \quad f \leq \operatorname{Disj}_{2^{n}} \\
& \Longrightarrow \quad \mathbf{Z A M}(f) \leq O\left(2^{n}\right)
\end{array}
\end{aligned}
$$

Results

Theorem 1: $\quad \forall f: \quad \mathbf{Z A M}(f) \leq 2^{n}$

Results

Theorem 1: $\quad \forall f: \quad \mathbf{Z A M}(f) \leq \operatorname{BranchingProgramSize}(f)$

Results

Theorem 1: $\quad \forall f: \quad \operatorname{ZAM}(f) \leq \operatorname{BranchingProgramSize}(f)$ Theorem 2: $\quad \forall f: \quad \operatorname{ZAM}(f) \geq \boldsymbol{\operatorname { c o N P }}(f)$

Results

$$
\begin{array}{lll}
\text { Theorem 1: } & \forall f: & \mathbf{Z A M}(f) \leq \operatorname{BranchingProgramSize}(f) \\
\text { Theorem 2: } & \forall f: & \mathbf{Z A M}(f) \geq \mathbf{c o N P}(f) \\
\text { Theorem 3: } & \forall f: & \mathbf{U A M}(f) \geq \mathbf{P P}(f) \quad=\Theta \text { (discrepancy) }
\end{array}
$$

Results


```
Theorem 1: \(\quad \forall f: \quad \mathbf{Z A M}(f) \leq \operatorname{BranchingProgramSize}(f)\)
Theorem 2: \(\quad \forall f: \quad \mathbf{Z A M}(f) \geq \mathbf{c o N P}(f)\)
Theorem 3: \(\quad \forall f: \quad \mathbf{U A M}(f) \geq \mathbf{P P}(f) \quad=\Theta\) (discrepancy)
Theorem 4: \(\quad \mathbf{U A M}\) (set-intersection) \(\geq \Omega(n)\)
```


Results

Theorem 1: $\quad \forall f: \quad \mathbf{Z A M}(f) \leq \operatorname{BranchingProgramSize}(f)$
Theorem 2: $\quad \forall f: \quad \operatorname{ZAM}(f) \geq \mathbf{c o N P}(f)$
Theorem 3: $\quad \forall f$: $\mathbf{U A M}(f) \geq \mathbf{P P}(f) \quad=\Theta$ (discrepancy)
Theorem 4: $\quad \mathbf{U A M}($ set-intersection $) \geq \Omega(n)$
Theorem 5*: $\exists f: \quad \mathbf{U A M}(f) \ll \mathbf{S B P}(f) \quad=\Theta$ (corruption)

Proof idea for $\mathbf{Z A M}(f) \leq \operatorname{BranchingProgramSize}(f)$

1 Reduce f to problem of form $\operatorname{det}\left(M_{f}\right) \neq 0$

$$
\begin{gathered}
\text { Alice }\left\{\begin{array}{llllll}
1 & 1 & 0 & 1 & 0 & 3 \\
4 & 2 & 1 & 1 & 0 & 0 \\
1 & 0 & 3 & 1 & 0 & 1 \\
1 & 1 & 3 & 0 & 1 & 2 \\
0 & 0 & 1 & 4 & 4 & 1 \\
2 & 0 & 1 & 1 & 0 & 3
\end{array}\right]
\end{gathered}
$$

Proof idea for $\mathbf{Z A M}(f) \leq \operatorname{BranchingProgramSize}(f)$

1 Reduce f to problem of form $\operatorname{det}\left(M_{f}\right) \neq 0$
2 ZAM protocol for $\operatorname{det}\left(M_{f}\right) \neq 0$:

- Alice+Bob pick random vector

$$
\text { Alice }\left\{\begin{array}{llllll}
1 & 1 & 0 & 1 & 0 & 3 \\
4 & 2 & 1 & 1 & 0 & 0 \\
1 & 0 & 3 & 1 & 0 & 1 \\
1 & 1 & 3 & 0 & 1 & 2 \\
0 & 0 & 1 & 4 & 4 & 1 \\
2 & 0 & 1 & 1 & 0 & 3
\end{array}\right] \quad\left[\begin{array}{l}
3 \\
3 \\
0 \\
1 \\
0 \\
1
\end{array}\right]
$$

Proof idea for $\mathbf{Z A M}(f) \leq \operatorname{BranchingProgramSize}(f)$

1 Reduce f to problem of form $\operatorname{det}\left(M_{f}\right) \neq 0$
2 ZAM protocol for $\operatorname{det}\left(M_{f}\right) \neq 0$:

- Alice+Bob pick random vector
- Merlin sends a preimage
- Alice+Bob check that preimage maps to vector

$$
\begin{aligned}
& \text { Alice }\left\{\begin{array}{llllll}
1 & 1 & 0 & 1 & 0 & 3 \\
4 & 2 & 1 & 1 & 0 & 0 \\
1 & 0 & 3 & 1 & 0 & 1 \\
1 & 1 & 3 & 0 & 1 & 2 \\
0 & 0 & 1 & 4 & 4 & 1 \\
2 & 0 & 1 & 1 & 0 & 3
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0 \\
4 \\
3 \\
4 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
0 \\
1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

Summary

This work:

- We introduced restricted models ZAM and UAM that capture some of the difficulty of AM

Open problems:

- Most annoying: Prove
$\mathbf{Z A M}($ set-disjointness $) \geq \Omega(n)$
- Close the gap:

$$
\forall f: \mathbf{Z A M}(f) \leq 2^{n} \quad \text { vs. } \quad \exists f: \mathbf{Z A M}(f) \geq n
$$

