

Bipartite Vertex Cover

<u>Mika Göös</u> Jukka Suomela University of Toronto & HIIT University of Helsinki & HIIT

Definition:

Run-time R = radius-R neighbourhood:

Nodes have unique IDs
Nodes get random strings as input

Prior work on **Min Vertex Cover** (MIN-VC)

Apx ratio Run-time

General graphs O(1) $\Omega(\sqrt{\log n})$ [KMW **PODC'04**]

Prior work on Min Vertex Cover (MIN-VC)

	Apx ratio	Run-time	
General graphs	<i>O</i> (1)	$\Omega(\sqrt{\log n})$	[KMW PODC'04]
Bounded degree	O(1) 2+ ϵ	$0 \\ O_{\epsilon}(1) \\ O(1)$	[KMW SODA'06]
	$\frac{2}{2-\epsilon}$	$\Omega(1)$ $\Omega(\log n)$	[PR '07]

Prior work on Min Vertex Cover (MIN-VC)

	Apx ratio	Run-time	
General graphs	<i>O</i> (1)	$\Omega(\sqrt{\log n})$	[KMW PODC'04]
Bounded degree	O(1)	0	
	$2+\epsilon$	$O_{\epsilon}(1)$	[KMW SODA'06]
	2	O(1)	[ÅS SPAA'10]
	$2-\epsilon$	$\Omega(\log n)$	[PR '07]

Note: MIN-VC is solvable on **bipartite** graphs using sequential polynomial-time algorithms!

Goos and Suomela

Question: Can we approximate MIN-VC fast on **bipartite** graphs?

Question: Can we approximate MIN-VC fast on **bipartite** graphs?

 $(1 + \epsilon)$ -approximation scheme?

- Setting: Bipartite 2-coloured graph
 - Bounded degree $\Delta = O(1)$
 - Compute $(1 + \epsilon)$ -approximation

- Bounded degree $\Delta = O(1)$
- Compute $(1 + \epsilon)$ -approximation

- Bounded degree $\Delta = O(1)$
- Compute $(1 + \epsilon)$ -approximation

- Bounded degree $\Delta = O(1)$
- Compute $(1 + \epsilon)$ -approximation

- Bounded degree $\Delta = O(1)$
- Compute $(1 + \epsilon)$ -approximation

Setting: – Bipartite 2-coloured graph

- Bounded degree $\Delta = O(1)$
- Compute $(1 + \epsilon)$ -approximation

LP dualityTotal unimodularity

- Bounded degree $\Delta = O(1)$
- Compute $(1 + \epsilon)$ -approximation

- = LP duality
- = Total unimodularity
- = König's theorem

Setting: – Bipartite 2-coloured graph

- Bounded degree $\Delta = O(1)$
- Compute $(1 + \epsilon)$ -approximation

[KMW SODA'06]

Setting: – Bipartite 2-coloured graph

- Bounded degree $\Delta = O(1)$
- Compute $(1 + \epsilon)$ -approximation

[KMW SODA'06] [NO FOCS'08], [ÅPRSU '10]

Our result

Main Theorem

 $\exists \delta > 0$: No $o(\log n)$ -time algorithm to $(1 + \delta)$ -approximate MIN-VC on 2-coloured graphs of max degree $\Delta = 3$

Main Theorem

 $\exists \delta > 0$: No $o(\log n)$ -time algorithm to $(1 + \delta)$ -approximate MIN-VC on 2-coloured graphs of max degree $\Delta = 3$

Lower bound is tight

There is O_ε(log n)-time approx. scheme [LS '93]
If Δ = 2 there is O_ε(1)-time approx. scheme

Why is **MIN-VC** difficult for distributed graph algorithms?

Short answer: Solving MIN-VC requires solving a hard **cut minimisation** problem

Why is **MIN-VC** difficult for distributed graph algorithms?

- **Short answer:** Solving MIN-VC requires solving a hard **cut minimisation** problem
 - Strategy: 1. Reduce cut problem to MIN-VC2. Prove that cut problem is hard

RECUT problem

Input: Labelled graph (G, ℓ_{in}) where $\ell_{in} : V \to \{\text{red}, \text{blue}\}$ **Output:** Labelling $\ell_{out} : V \to \{\text{red}, \text{blue}\}$ that minimises the size of the cut $|\ell_{out}|$ subject to

- If ℓ_{in} is all-red then ℓ_{out} is all-red
- If ℓ_{in} is all-blue then ℓ_{out} is all-blue

RECUT problem

Input: Labelled graph (G, ℓ_{in}) where $\ell_{in} : V \to \{\text{red}, \text{blue}\}$ **Output:** Labelling $\ell_{out} : V \to \{\text{red}, \text{blue}\}$ that minimises the size of the cut $|\ell_{out}|$ subject to

- If ℓ_{in} is all-red then ℓ_{out} is all-red
- If ℓ_{in} is all-blue then ℓ_{out} is all-blue

RECUT problem

Input: Labelled graph (G, ℓ_{in}) where $\ell_{in} : V \to \{\text{red}, \text{blue}\}$ **Output:** Labelling $\ell_{out} : V \to \{\text{red}, \text{blue}\}$ that minimises the size of the cut $|\ell_{out}|$ subject to

- If ℓ_{in} is all-red then ℓ_{out} is all-red
- If ℓ_{in} is all-blue then ℓ_{out} is all-blue

RECUT problem

Input: Labelled graph (G, ℓ_{in}) where $\ell_{in} : V \to \{\text{red}, \text{blue}\}$ **Output:** Labelling $\ell_{out} : V \to \{\text{red}, \text{blue}\}$ that minimises the size of the cut $|\ell_{out}|$ subject to

- If ℓ_{in} is all-red then ℓ_{out} is all-red

- If ℓ_{in} is all-blue then ℓ_{out} is all-blue

$RECUT \leq MIN-VC$

If: MIN-VC can be $(1 + \epsilon)$ -approximated in time *R* Then: We can compute in time *R* a RECUT of density

$$\frac{|\ell_{\mathsf{out}}|}{|E|} \le \epsilon$$

Theorem: RECUT \leq MIN-VC

Theorem: RECUT \leq MIN-VC

Sometimes RECUT Is Easy: The algorithm "Output red iff you see any red nodes" computes a small RECUT on grid-like graphs

Theorem: RECUT \leq MIN-VC

Sometimes RECUT Is Easy: The algorithm "Output red iff you see any red nodes" computes a small RECUT on grid-like graphs

Therefore: We consider expander graphs that satisfy

$$|\ell| \geq \delta \cdot \min(|\ell^{-1}(\mathsf{red})|, |\ell^{-1}(\mathsf{blue})|)$$

Theorem: RECUT \leq MIN-VC

Sometimes RECUT Is Easy: The algorithm "Output red iff you see any red nodes" computes a small RECUT on grid-like graphs

Therefore: We consider expander graphs that satisfy

$$|\ell| \geq \delta \cdot \min(|\ell^{-1}(\mathsf{red})|, |\ell^{-1}(\mathsf{blue})|)$$

Main Technical Lemma: We fool a fast algorithm into producing a **balanced** RECUT

$$|\ell_{\mathsf{out}}^{-1}(\mathsf{red})| \approx |\ell_{\mathsf{out}}^{-1}(\mathsf{blue})| \approx n/2$$

Conclusions

Our result:

 No *o*(log *n*)-time approximation scheme for MIN-VC on 2-coloured graphs with Δ = 3

Our result:

 No *o*(log *n*)-time approximation scheme for MIN-VC on 2-coloured graphs with Δ = 3

Open problems:

- Approximation ratios for *O*(1)-time algorithms?
- Derandomising Linial–Saks requires designing deterministic algorithms for RECUT

Our result:

 No *o*(log *n*)-time approximation scheme for MIN-VC on 2-coloured graphs with Δ = 3

Open problems:

- Approximation ratios for *O*(1)-time algorithms?
- Derandomising Linial–Saks requires designing deterministic algorithms for RECUT

Cheers!