
Bipartite Vertex Cover
Mika Göös University of Toronto & HIIT

Jukka Suomela University of Helsinki & HIIT

Göös and Suomela Bipartite Vertex Cover 17th October 2012 1 / 12



LOCALmodel

7→ {0, 1}

Göös and Suomela Bipartite Vertex Cover 17th October 2012 2 / 12



LOCALmodel

7→ {0, 1}

Göös and Suomela Bipartite Vertex Cover 17th October 2012 2 / 12



LOCALmodel

7→ {0, 1}

Göös and Suomela Bipartite Vertex Cover 17th October 2012 2 / 12



LOCALmodel

7→ {0, 1}

Göös and Suomela Bipartite Vertex Cover 17th October 2012 2 / 12



LOCALmodel

7→ {0, 1}

Göös and Suomela Bipartite Vertex Cover 17th October 2012 2 / 12



LOCALmodel

7→ {0, 1}

Göös and Suomela Bipartite Vertex Cover 17th October 2012 2 / 12



LOCALmodel

7→ {0, 1}

Göös and Suomela Bipartite Vertex Cover 17th October 2012 2 / 12



LOCALmodel

7→ {0, 1}

Göös and Suomela Bipartite Vertex Cover 17th October 2012 2 / 12



LOCALmodel

7→ {0, 1}

Göös and Suomela Bipartite Vertex Cover 17th October 2012 2 / 12



LOCALmodel

Definition:

A : { } → {0, 1}

Run-time R
= radius-R neighbourhood:
1 Nodes have unique IDs
2 Nodes get random strings as input
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Prior work on Min Vertex Cover (MIN-VC)

Apx ratio Run-time

General graphs O(1) Ω(
√

log n) [KMW PODC’04]

Bounded degree O(1) 0
2 + ε Oε(1) [KMW SODA’06]

2 O(1) [ÅS SPAA’10]

2− ε Ω(log n) [PR ’07]

Note: MIN-VC is solvable on bipartite graphs using
sequential polynomial-time algorithms!
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The bipartite case

Question: Can we approximate MIN-VC
fast on bipartite graphs?

(1 + ε)-approximation scheme?
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The bipartite case

Setting: − Bipartite 2-coloured graph
− Bounded degree ∆ = O(1)
− Compute (1 + ε)-approximation

Surprise: No Sublogarithmic-Time Approximation
Scheme for Bipartite Vertex Cover!

Covering

Packing

Integer Min
VC

Max
Matching

LP Min
Frac. VC

Max
Frac. Matching

= LP duality
= Total unimodularity
= König’s theorem

=
=

= =

[KMW SODA’06]
[NO FOCS’08], [ÅPRSU ’10]

Göös and Suomela Bipartite Vertex Cover 17th October 2012 6 / 12



The bipartite case

Setting: − Bipartite 2-coloured graph
− Bounded degree ∆ = O(1)
− Compute (1 + ε)-approximation

Surprise: No Sublogarithmic-Time Approximation
Scheme for Bipartite Vertex Cover!

Covering

Packing

Integer Min
VC

Max
Matching

LP Min
Frac. VC

Max
Frac. Matching

= LP duality
= Total unimodularity
= König’s theorem

=
=

= =

[KMW SODA’06]
[NO FOCS’08], [ÅPRSU ’10]

Göös and Suomela Bipartite Vertex Cover 17th October 2012 6 / 12



The bipartite case

Setting: − Bipartite 2-coloured graph
− Bounded degree ∆ = O(1)
− Compute (1 + ε)-approximation

Surprise: No Sublogarithmic-Time Approximation
Scheme for Bipartite Vertex Cover!

Covering

Packing

Integer Min
VC

Max
Matching

LP Min
Frac. VC

Max
Frac. Matching

= LP duality
= Total unimodularity
= König’s theorem

=
=

= =

[KMW SODA’06]
[NO FOCS’08], [ÅPRSU ’10]

Göös and Suomela Bipartite Vertex Cover 17th October 2012 6 / 12



The bipartite case

Setting: − Bipartite 2-coloured graph
− Bounded degree ∆ = O(1)
− Compute (1 + ε)-approximation

Surprise: No Sublogarithmic-Time Approximation
Scheme for Bipartite Vertex Cover!

Covering Packing

Integer Min
VC

Max
Matching

LP Min
Frac. VC

Max
Frac. Matching

= LP duality
= Total unimodularity
= König’s theorem

=
=

= =

[KMW SODA’06]
[NO FOCS’08], [ÅPRSU ’10]

Göös and Suomela Bipartite Vertex Cover 17th October 2012 6 / 12



The bipartite case

Setting: − Bipartite 2-coloured graph
− Bounded degree ∆ = O(1)
− Compute (1 + ε)-approximation

Surprise: No Sublogarithmic-Time Approximation
Scheme for Bipartite Vertex Cover!

Covering Packing

Integer Min
VC

Max
Matching

LP Min
Frac. VC

Max
Frac. Matching

= LP duality

= Total unimodularity
= König’s theorem

=

=

= =

[KMW SODA’06]
[NO FOCS’08], [ÅPRSU ’10]

Göös and Suomela Bipartite Vertex Cover 17th October 2012 6 / 12



The bipartite case

Setting: − Bipartite 2-coloured graph
− Bounded degree ∆ = O(1)
− Compute (1 + ε)-approximation

Surprise: No Sublogarithmic-Time Approximation
Scheme for Bipartite Vertex Cover!

Covering Packing

Integer Min
VC

Max
Matching

LP Min
Frac. VC

Max
Frac. Matching

= LP duality
= Total unimodularity

= König’s theorem

=

=

= =

[KMW SODA’06]
[NO FOCS’08], [ÅPRSU ’10]

Göös and Suomela Bipartite Vertex Cover 17th October 2012 6 / 12



The bipartite case

Setting: − Bipartite 2-coloured graph
− Bounded degree ∆ = O(1)
− Compute (1 + ε)-approximation

Surprise: No Sublogarithmic-Time Approximation
Scheme for Bipartite Vertex Cover!

Covering Packing

Integer Min
VC

Max
Matching

LP Min
Frac. VC

Max
Frac. Matching

= LP duality
= Total unimodularity
= König’s theorem

=
=

= =

[KMW SODA’06]
[NO FOCS’08], [ÅPRSU ’10]

Göös and Suomela Bipartite Vertex Cover 17th October 2012 6 / 12



The bipartite case

Setting: − Bipartite 2-coloured graph
− Bounded degree ∆ = O(1)
− Compute (1 + ε)-approximation

Surprise: No Sublogarithmic-Time Approximation
Scheme for Bipartite Vertex Cover!

Covering Packing

Integer Min
VC

Max
Matching

LP Oε(1) Oε(1)

= LP duality
= Total unimodularity
= König’s theorem

=
=

= =

[KMW SODA’06]

[NO FOCS’08], [ÅPRSU ’10]

Göös and Suomela Bipartite Vertex Cover 17th October 2012 6 / 12



The bipartite case

Setting: − Bipartite 2-coloured graph
− Bounded degree ∆ = O(1)
− Compute (1 + ε)-approximation

Surprise: No Sublogarithmic-Time Approximation
Scheme for Bipartite Vertex Cover!

Covering Packing

Integer Min
VC Oε(1)

LP Oε(1) Oε(1)

= LP duality
= Total unimodularity
= König’s theorem

=
=

= =

[KMW SODA’06]
[NO FOCS’08], [ÅPRSU ’10]

Göös and Suomela Bipartite Vertex Cover 17th October 2012 6 / 12



The bipartite case

Setting: − Bipartite 2-coloured graph
− Bounded degree ∆ = O(1)
− Compute (1 + ε)-approximation

Surprise: No Sublogarithmic-Time Approximation
Scheme for Bipartite Vertex Cover!

Covering Packing

Integer ??? Oε(1)

LP Oε(1) Oε(1)

= LP duality
= Total unimodularity
= König’s theorem

=
=

= =

[KMW SODA’06]
[NO FOCS’08], [ÅPRSU ’10]

Göös and Suomela Bipartite Vertex Cover 17th October 2012 6 / 12



The bipartite case

Setting: − Bipartite 2-coloured graph
− Bounded degree ∆ = O(1)
− Compute (1 + ε)-approximation

Surprise: No Sublogarithmic-Time Approximation
Scheme for Bipartite Vertex Cover!

Covering Packing

Integer Ω(log n) Oε(1)

LP Oε(1) Oε(1)

= LP duality
= Total unimodularity
= König’s theorem

=
=

= =

[KMW SODA’06]
[NO FOCS’08], [ÅPRSU ’10]

Göös and Suomela Bipartite Vertex Cover 17th October 2012 6 / 12



The bipartite case

Setting: − Bipartite 2-coloured graph
− Bounded degree ∆ = O(1)
− Compute (1 + ε)-approximation

Surprise: No Sublogarithmic-Time Approximation
Scheme for Bipartite Vertex Cover!

Covering Packing

Integer Ω(log n) Oε(1)

LP Oε(1) Oε(1)

= LP duality
= Total unimodularity
= König’s theorem

=
=

= =

[KMW SODA’06]
[NO FOCS’08], [ÅPRSU ’10]

Göös and Suomela Bipartite Vertex Cover 17th October 2012 6 / 12



Our result

Main Theorem
∃δ > 0 : No o(log n)-time algorithm to (1 + δ)-approximate

MIN-VC on 2-coloured graphs of max degree ∆ = 3

Lower bound is tight

1 There is Oε(log n)-time approx. scheme [LS ’93]

2 If ∆ = 2 there is Oε(1)-time approx. scheme
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Why is MIN-VC difficult for distributed
graph algorithms?

Short answer: Solving MIN-VC requires solving
a hard cut minimisation problem

Strategy: 1. Reduce cut problem to MIN-VC
2. Prove that cut problem is hard
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Reduction formalised

`in

`out

7−→

RECUT problem

Input: Labelled graph (G, `in) where `in : V → {red, blue}
Output: Labelling `out : V → {red, blue} that minimises

the size of the cut |`out| subject to
− If `in is all-red then `out is all-red
− If `in is all-blue then `out is all-blue

RECUT ≤ MIN-VC
If: MIN-VC can be (1 + ε)-approximated in time R

Then: We can compute in time R a RECUT of density

|`out|
|E| ≤ ε
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Reduction in pictures
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On RECUT

`in `out

7−→

Theorem: RECUT ≤ MIN-VC

Sometimes RECUT Is Easy:
The algorithm “Output red iff you see any red nodes”
computes a small RECUT on grid-like graphs

Therefore: We consider expander graphs that satisfy

|`| ≥ δ ·min(|`−1(red)|, |`−1(blue)|)

Main Technical Lemma: We fool a fast algorithm into
producing a balanced RECUT

|`−1
out(red)| ≈ |`−1

out(blue)| ≈ n/2
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Conclusions

Our result:

No o(log n)-time approximation scheme for
MIN-VC on 2-coloured graphs with ∆ = 3

Open problems:

Approximation ratios for O(1)-time algorithms?
Derandomising Linial–Saks requires designing
deterministic algorithms for RECUT

Cheers!
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