Communication Complexity

Partition Numbers

(Based on 2 papers to appear at FOCS)
Mika Göös, Toniann Pitassi, and Thomas Watson
University of Toronto

Chapter 1...

Communication complexity

Compute: $F(x, y) \in\{0,1\}$

Deterministic protocols

| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |

$$
F: \mathcal{X} \times \mathcal{Y} \rightarrow\{0,1\}
$$

Deterministic protocols

0	1	1	1	0	1	1	1
0	1	1	1	0	1	1	1
0	1	1	1	0	0	0	0
0	1	1	1	1	1	0	1
0	0	0	1	1	1	0	1
1	1	1	1	1	1	1	1
1	1	1	1	0	1	1	1
0	0	0	0	0	1	1	1

Deterministic protocols

0	1	1	1	0	1	1	1
0	1	1	1	0	1	1	1
0	1	1	1	0	0	0	0
0	1	1	1	1	1	0	1
0	0	0	1	1	1	0	1
1	1	1	1	1	1	1	1
1	1	1	1	0	1	1	1
0	0	0	0	0	1	1	1

Deterministic protocols

0	1	1	1	0	1	1	1
0	1	1	1	0	1	1	1
0	1	1	1	0	0	0	0
0	1	1	1	1	1	0	1
0	0	0	1	1	1	0	1
1	1	1	1	1	1	1	1
1	1	1	1	0	1	1	1
0	0	0	0	0	1	1	1

Deterministic protocols

0	1	1	1	0	1	1	1
0	1	1	1	0	1	1	1
0	1	1	1	0	0	0	0
0	1	1	1	1	1	0	1
0	0	0	1	1	1	0	1
1	1	1	1	1	1	1	1
1	1	1	1	0	1	1	1
0	0	0	0	0	1	1	1

Deterministic protocols

0	1	1	1	0	1	1	1
0	1	1	1	0	1	1	1
0	1	1	1	0	0	0	0
0	1	1	1	1	1	0	1
0	0	0	1	1	1	0	1
1	1	1	1	1	1	1	1
1	1	1	1	0	1	1	1
0	0	0	0	0	1	1	1

Deterministic protocols

0	1	1	1	0	1	1	1
0	1	1	1	0	1	1	1
0	1	1	1	0	0	0	0
0	1	1	1	1	1	0	1
0	0	0	1	1	1	0	1
1	1	1	1	1	1	1	1
1	1	1	1	0	1	1	1
0	0	0	0	0	1	1	1

- $\mathbf{P}^{\mathbf{c c}}(F):=$ Deterministic communication complexity of F
- Partition number $\chi(F):=$ Least number of monochromatic rectangles required to partition the communication matrix

Deterministic protocols

0	1	1	1	0	1	1	1
0	1	1	1	0	1	1	1
0	1	1	1	0	0	0	0
0	1	1	1	1	1	0	1
0	0	0	1	1	1	0	1
1	1	1	1	1	1	1	1
1	1	1	1	0	1	1	1
0	0	0	0	0	1	1	1

Basic fact:

$$
\mathbf{P}^{\mathbf{c c}}(F) \geq \log \chi(F)
$$

[Kushilevitz-Nisan]:

$$
\mathbf{P}^{\mathbf{c c}}(F) \leq O(\log \chi(F)) ?
$$

- $\mathbf{P}^{\mathbf{c c}}(F):=$ Deterministic communication complexity of F
- Partition number $\chi(F):=$ Least number of monochromatic rectangles required to partition the communication matrix

Our results

- Theorem 1: $\exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq \tilde{\Omega}\left(\log ^{1.5} \chi(F)\right)$

0	0	0	1	1	1	0	1
1	1	1	1	1	1	1	1
1	1	1	1	0	1	1	1
0	0	0	0	0	1	1	1

$$
\begin{aligned}
& \text { [Kushilevitz-Nisan]: } \\
& \mathbf{P}^{\mathbf{c c}}(F) \leq O(\log \chi(F)) ?
\end{aligned}
$$

- $\mathbf{P}^{\mathbf{c c}}(F):=$ Deterministic communication complexity of F
- Partition number $\chi(F):=$ Least number of monochromatic rectangles required to partition the communication matrix

Our results

- Theorem 1: $\exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq \tilde{\Omega}\left(\log ^{1.5} \chi(F)\right)$

Our results

- Theorem 1: $\exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq \tilde{\Omega}\left(\log ^{1.5} \chi(F)\right)$
- Previously: [Aho-Ullman-Yannakakis, stoc'83]:

$$
\forall F: \quad \mathbf{P}^{c \mathbf{c}}(F) \leq O\left(\log ^{2} \chi(F)\right)
$$

[Kushilevitz-Linial-Ostrovsky, sTOC'96]:
$\exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq 2 \cdot \log \chi(F)$

Our results

- Theorem 1: $\exists F: \quad \mathbf{P}^{c \mathbf{c}}(F) \geq \tilde{\Omega}\left(\log ^{1.5} \chi(F)\right)$
- Theorem 2: $\exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq \tilde{\Omega}\left(\log ^{2} \chi_{1}(F)\right)$

One-sided partition numbers:

$$
\chi(F)=\chi_{1}(F)+\chi_{0}(F), \quad \chi_{i}(F):=\begin{aligned}
& \text { least number of rectangles } \\
& \text { needed to partition } F^{-1}(i)
\end{aligned}
$$

Our results

- Theorem 1: $\exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq \tilde{\Omega}\left(\log ^{1.5} \chi(F)\right)$
- Theorem 2: $\exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq \tilde{\Omega}\left(\log ^{2} \chi_{1}(F)\right)$
- Previously: Clique vs. Independent Set [Yannakakis, stoc's8]:

$$
\forall F: \quad \mathbf{P}^{c c}(F) \leq O\left(\log ^{2} \chi_{1}(F)\right)
$$

One-sided partition numbers:

$$
\chi(F)=\chi_{1}(F)+\chi_{0}(F), \quad \chi_{i}(F):=\begin{aligned}
& \text { least number of rectangles } \\
& \text { needed to partition } F^{-1}(i)
\end{aligned}
$$

Our results

- Theorem 1: $\exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq \tilde{\Omega}\left(\log ^{1.5} \chi(F)\right)$
- Theorem 2: $\exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq \tilde{\Omega}\left(\log ^{2} \chi_{1}(F)\right)$
- Corollary: $\quad \exists F: \quad \mathbf{P}^{c c}(F) \geq \tilde{\Omega}\left(\log ^{2} \operatorname{rank}(F)\right)$

Observation: $\quad \chi_{1}(F) \geq \operatorname{rank}(F)$

Our results

- Theorem 1: $\exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq \tilde{\Omega}\left(\log ^{1.5} \chi(F)\right)$
- Theorem 2: $\quad \exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq \tilde{\Omega}\left(\log ^{2} \chi_{1}(F)\right)$
- Corollary: $\quad \exists F: \quad \mathbf{P}^{c c}(F) \geq \tilde{\Omega}\left(\log ^{2} \operatorname{rank}(F)\right)$
- Previously: Log-rank conjecture [Lovász-Saks, Focs's8]: $\forall F: \quad \mathbf{P}^{c \mathrm{c}}(F) \leq \log ^{O(1)} \operatorname{rank}(F)$ [Kushilevitz-Nisan-Wigderson, FOCs'94]: $\exists F: \quad \mathbf{P}^{\mathrm{cc}}(F) \geq \Omega\left(\log ^{1.63} \operatorname{rank}(F)\right)$

Our results

- Theorem 1: $\exists F: \quad \mathbf{P}^{c c}(F) \geq \tilde{\Omega}\left(\log ^{1.5} \chi(F)\right)$
- Theorem 2: $\exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq \tilde{\Omega}\left(\log ^{2} \chi_{1}(F)\right)$
- Corollary: $\quad \exists F: \quad \mathbf{P}^{c c}(F) \geq \tilde{\Omega}\left(\log ^{2} \operatorname{rank}(F)\right)$
- Theorem 3: $\exists F: \quad \operatorname{coNP}^{\text {cc }}(F) \geq \Omega\left(\log ^{1.128} \chi_{1}(F)\right)$
||
Co-nondeterministic communication complexity

Nondeterministic protocols

Algorithmic definition:

1 Players guess a proof string $p \in\{0,1\}^{C}$
2 Alice accepts depending on (x, p)
3 Bob accepts depending on (y, p)
$4(x, y)$ is accepted iff both players accept
$\mathbf{N P}^{\mathbf{c c}}(F):=$ Least C for which there is an above type protocol accepting $F^{-1}(1)$

Combinatorial definition:
$\mathbf{N P}^{\mathbf{c c}}(F):=\quad \log \operatorname{Cov}_{1}(F)$
$\operatorname{Cov}_{1}(F):=$ Least number of monochromatic rectangles needed to cover $F^{-1}(1)$

Unambiguity: At most one accepting proof

Nondeterministic protocols

| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |

$$
\begin{aligned}
& \mathbf{N P}^{c c}=\log \operatorname{Cov}_{1}(F) \\
& \mathrm{UP}^{C C}=\log \chi_{1}(F) \\
& 2 U \mathbb{P}^{C C}=\log \chi(F)
\end{aligned}
$$

Nondeterministic protocols

| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |

$$
\begin{aligned}
& \mathrm{NP}^{\mathrm{cc}}=\log \operatorname{Cov}_{1}(F) \\
& \mathrm{UP}^{\mathrm{cc}}=\log \chi_{1}(F) \\
& 2 \mathrm{UP}^{\mathrm{cc}}=\log \chi(F)
\end{aligned}
$$

UP $=$ Unambiguous $\mathbf{N P}$

Nondeterministic protocols

0	1	1	1	0	1	1	1
0	1	1	1	0	1	1	1
0	1	1	1	0	0	0	0
0	1	1	1	0	0	0	1
0	0	0	1	1	1	0	1
1	1	1	1	1	1	1	1
1	1	1	0	0	0	1	1
0	0	0	0	0	0	1	1

$\mathbf{N} \mathbf{P}^{\mathbf{c c}}=\log \operatorname{Cov}_{1}(F)$
$\mathbf{U P}{ }^{\mathbf{C C}}=\log \chi_{1}(F)$
$2 \mathbf{U P}^{\mathrm{CC}}=\log \chi(F)$

Shorthand: $\quad 2 \mathrm{UP}=\mathrm{UP} \cap$ coUP

[Yannakakis, stoc's8]: $\quad \mathbf{P}^{\mathbf{c c}} \leq\left(\mathbf{U P}^{\mathbf{c c}}\right)^{2}$

0	1	1	1	0	1	1	1
0	1	1	1	0	1	1	1
0	1	1	1	0	0	0	0
0	1	1	1	0	0	0	1
0	0	0	1	1	1	0	1
1	1	1	1	1	1	1	1
1	1	1	0	0	0	1	1
0	0	0	0	0	0	1	1

A rectangle is good for Alice (Bob) if at most half of the other rectangles intersect it in rows (columns)

[Yannakakis, stoc's8]: $\quad \mathbf{P}^{\mathbf{c c}} \leq\left(\mathbf{U P}^{\mathbf{c c}}\right)^{2}$

0	1	1	1	0	1	1	1
0	1	1	1	0	1	1	1
0	1	1	1	0	0	0	0
0	1	1	1	0	0	0	1
0	0	0	1	1	1	0	1
1	1	1	1	1	1	1	1
1	1	1	0	0	0	1	1
0	0	0	0	0	0	1	1

A rectangle is good for Alice (Bob) if at most half of the other rectangles intersect it in rows (columns)

[Yannakakis, stoc's8]: $\quad \mathbf{P}^{\mathbf{c c}} \leq\left(\mathbf{U P}^{\mathbf{c c}}\right)^{2}$

0	1	1	1	0	1	$\stackrel{1}{4}$	1
0	1	\hat{A}	1	0	1		1
0	1		1	0	0	0	0
0	1	1	1	0	0	0	B
0	0	0	1	$\frac{1}{R}$	1	0	D
1	\hat{f}	1	1	${ }_{1}$	1	1	1
1		1	0	0	0		
0	0	0	0	0	0	1	1

A rectangle is good for Alice (Bob) if at most half of the other rectangles intersect it in rows (columns)

[Yannakakis, sToc'88]: $\quad \mathbf{P}^{\mathbf{c c}} \leq\left(\mathbf{U P}^{\mathbf{c c}}\right)^{2}$

Players announce a name of a good-for-them rectangle that intersects their row / column
[Yannakakis, stoc's8]:
$\mathrm{UP}^{\mathrm{cc}}=k$

$\mathbf{P}^{\mathbf{c c}} \leq\left(\mathbf{U P}^{\mathbf{c c}}\right)^{2}$

$\mathrm{UP}^{\mathrm{cc}}=k-1$

[Yannakakis, sToc'88]: $\quad \mathbf{P}^{\mathbf{c c}} \leq\left(\mathbf{U P}^{\mathbf{c c}}\right)^{2}$

Our results

- Theorem 1: $\quad \exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq \tilde{\Omega}\left(\mathbf{2} \mathbf{U} \mathbf{P}^{\mathbf{c c}}(F)^{1.5}\right)$
- Theorem 2: $\exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq \tilde{\Omega}\left(\mathbf{U P}^{\mathbf{c c}}(F)^{2}\right)$
- Theorem 3: $\exists F: \quad \boldsymbol{c o N P}^{\mathbf{c c}}(F) \geq \Omega\left(\mathbf{U P}^{\mathbf{c c}}(F)^{1.128}\right)$

Our results

- Theorem 1: $\exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq \tilde{\Omega}\left(\mathbf{2} \mathbf{U} \mathbf{P}^{\mathbf{c c}}(F)^{1.5}\right)$
- Theorem 2: $\exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq \tilde{\Omega}\left(\mathbf{U P}^{\mathbf{c c}}(F)^{2}\right)$
- Theorem 3: $\exists F: \quad \mathbf{c o N P}{ }^{\mathbf{c c}}(F) \geq \Omega\left(\mathbf{U P}^{\mathbf{c c}}(F)^{1.128}\right)$

Our results

- Theorem 1: $\exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq \tilde{\Omega}\left(\mathbf{2} \mathbf{U P} \mathbf{P}^{\mathbf{c c}}(F)^{1.5}\right)$
- Theorem 2: $\exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq \tilde{\Omega}\left(\mathbf{U P}^{\mathbf{c c}}(F)^{2}\right)$
- Theorem 3: $\exists F: \quad \operatorname{coNP}{ }^{\mathbf{c c}}(F) \geq \Omega\left(\mathbf{U P}^{\mathbf{c c}}(F)^{1.128}\right)$

Clique vs. Independent Set

[Yannakakis, sTOC'88]:

Clique vs. Independent Set is complete for $\mathbf{U P}{ }^{\mathbf{c c}}$

CIS_{G} on a graph $G=(V, E):$

- Alice holds a clique $C \subseteq V$
- Bob holds an independent set $I \subseteq V$
- Output $|C \cap I| \in\{0,1\}$

$$
\text { Note: } \mathbf{U P}^{\mathbf{c c}}\left(\mathrm{CIS}_{G}\right) \leq \log |V|
$$

UP ${ }^{\text {cc }}$ reduces to CIS

[Yannakakis, STOC'88]

0	1	1	1	0	1	1	1
0	1	1	1	0	1	1	1
0	1	1	1	0	0	0	0
0	1	1	1	0	0	0	1
0	0	0	1	1	1	0	1
1	1	1	1	1	1	1	1
1	1	1	0	0	0	1	1
0	0	0	0	0	0	1	1

Fix a partition of $F^{-1}(1)$. Construct $G=(V, E)$ where $V=\{$ rectangles $\}$ and $\{u, v\} \in E$ iff u and v share a row
F reduces to CIS $_{G}$: Alice (Bob) maps her row (column) to the set of rectangles intersecting it

UP ${ }^{\text {cc }}$ reduces to CIS

[Yannakakis, STOC'88]

0	1	1	1	0	1	1	1
0	1	1	1	0	1	1	1
0	1	1	1	0	0	0	0
0	1	1	1	0	0	0	1
0	0	0	1	1	1	0	1
1	1	1	1	1	1	1	1
1	1	1	0	0	0	1	1
0	0	0	0	0	0	1	1

Fix a partition of $F^{-1}(1)$. Construct $G=(V, E)$ where $V=\{$ rectangles $\}$ and $\{u, v\} \in E$ iff u and v share a row

Summary: $\quad \mathbf{U P}^{\mathbf{c c}}(F)=\mathbf{U P}^{\mathbf{c c}}\left(\mathrm{CIS}_{G}\right)=\log |V|$

More on CIS

Yannakakis's motivation:

Size of LPs for the vertex packing polytope of G Breakthrough: [Fiorini et al., STOC'12]

For an n-node graph:
$\forall G:$
$\forall G:$
$\forall G:$
$\mathbf{U P}{ }^{\mathrm{cc}}\left(\mathrm{CIS}_{G}\right)=\log n$
$\operatorname{coNP}{ }^{c c}\left(\mathrm{CIS}_{G}\right) \leq O\left(\log ^{2} n\right)$

Yannakakis's question:

$\forall G: \quad \operatorname{coNP}{ }^{c c}\left(\mathrm{CIS}_{G}\right) \leq O(\log n) \quad ?$

More on CIS

Alon-Saks-Seymour conjecture:

$\forall G: \quad \operatorname{chr}(G) \leq \operatorname{bp}(G)+1$
$\operatorname{chr}(G):=$ Chromatic number of G
$\operatorname{bp}(G):=$ Least number of bicliques needed to partition $E(G)$

Yannakakis's question:

$\forall G: \quad \operatorname{coNP}{ }^{c c}\left(\mathrm{CIS}_{G}\right) \leq O(\log n) \quad ?$

More on CIS

Alon-Saks-Seymour conjecture:

$\forall G$:

[Huang-Sudakov, 2010]: $\exists G: \operatorname{chr}(G) \geq \mathrm{bp}(G)^{6 / 5}$ [Shigeta-Amano, 2014]: $\exists G: \operatorname{chr}(G) \geq \mathrm{bp}(G)^{2}$

Yannakakis's question:

$\forall G: \quad \operatorname{coNP}{ }^{c c}\left(\mathrm{CIS}_{G}\right) \leq O(\log n) \quad ?$

More on CIS

Polynomial Alon-Saks-Seymour conjecture:

$\forall G$: $\operatorname{chr}(G) \leq \operatorname{poly}(\operatorname{bp}(G))$

Yannakakis's question:

$\forall G: \quad \operatorname{coNP}{ }^{c c}\left(\mathrm{CIS}_{G}\right) \leq O(\log n) \quad ?$

More on CIS

Polynomial Alon-Saks-Seymour conjecture:

$\forall G$:

$$
\operatorname{chr}(G) \leq \operatorname{poly}(\operatorname{bp}(G))
$$

Yannakakis's question:

$\forall G: \quad \boldsymbol{c o N P}^{\text {cc }}\left(\mathrm{CIS}_{G}\right) \leq O(\log n) \quad ?$

More on CIS

More on CIS

Communication:

- Theorem 1: $\exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq \tilde{\Omega}\left(\mathbf{2} \mathbf{U P}^{\mathbf{c c}}(F)^{1.5}\right)$
- Theorem 2: $\exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq \tilde{\Omega}\left(\mathbf{U P}^{\mathbf{c c}}(F)^{\mathbf{2}}\right)$
- Theorem 3: $\exists F: \quad \boldsymbol{c o N P}^{\mathbf{c c}}(F) \geq \Omega\left(\mathbf{U P}^{\mathbf{c c}}(F)^{1.128}\right)$

Communication:

- Theorem 1: $\exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq \tilde{\Omega}\left(\mathbf{2} \mathbf{U P}^{\mathbf{c c}}(F)^{1.5}\right)$
- Theorem 2: $\exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq \tilde{\Omega}\left(\mathbf{U P}^{\mathbf{c c}}(F)^{2}\right)$
- Theorem 3: $\exists F: \quad \operatorname{coNP}{ }^{\mathbf{c c}}(F) \geq \Omega\left(\mathbf{U P}^{\mathbf{c c}}(F)^{1.128}\right)$

2-step strategy:

- Prove analogous query separations
- Apply a communication \leftrightarrow query simulation theorem

Decision tree:

- Theorem 1: $\exists f: \quad \mathbf{P}^{\mathbf{d t}}(f) \geq \tilde{\Omega}\left(\mathbf{2} \mathbf{U P}^{\mathbf{d t}}(f)^{1.5}\right)$
- Theorem 2: $\exists f: \quad \mathbf{P}^{\mathbf{d t}}(f) \geq \tilde{\Omega}\left(\mathbf{U P}^{\mathbf{d t}}(f)^{2}\right)$
- Theorem 3: $\exists f: \quad \operatorname{coNP}{ }^{\mathbf{d t}}(f) \geq \Omega\left(\mathbf{U P}^{\mathbf{d t}}(f)^{1.128}\right)$

2-step strategy:

- Prove analogous query separations
- Apply a communication \leftrightarrow query simulation theorem

Step 1: Query separations

Decision tree models

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

$\mathbf{P}^{\mathrm{dt}}(f)=$ Deterministic query complexity
 $\mathbf{N P}^{\mathrm{dt}}(f)=$ Nondeterministic query complexity
 = 1-certificate complexity
 $=$ DNF width

 $=$ Unambiguous query complexity
 $=$ Unambiguous DNF width

Quadratic P-vs-UP gap

Warm-up example f :

- M is $k \times k$ matrix with entries in $\{0,1\}$

■ $f(M)=1 \Longleftrightarrow M$ contains a unique all-1 column

0	1	1	1	1	1
1	0	0	1	1	1
0	1	0	1	0	1
1	0	1	1	1	0
1	1	1	1	1	0
1	1	0	1	1	1

Quadratic P-vs-UP gap

Warm-up example f :

- M is $k \times k$ matrix with entries in $\{0,1\}$
- $f(M)=1 \Longleftrightarrow M$ contains a unique all- 1 column

			1		
			1		
0			1	0	
	0		1		
			1		0
		0	1		

$$
\mathrm{NP}^{\mathrm{dt}}=2 k-1
$$

Quadratic P-vs-UP gap

Warm-up example f :

- M is $k \times k$ matrix with entries in $\{0,1\}$
- $f(M)=1 \Longleftrightarrow M$ contains a unique all- $\mathbf{1}$ column

$$
\begin{aligned}
\mathbf{N P}^{\mathrm{dt}} & =2 k-1 \\
\mathbf{P}^{\mathrm{dt}} & =k^{2}
\end{aligned}
$$

Quadratic P-vs-UP gap

Warm-up example f :

- M is $k \times k$ matrix with entries in $\{0,1\}$
- $f(M)=1 \Longleftrightarrow M$ contains a unique all- $\mathbf{1}$ column

$$
\begin{aligned}
\mathbf{N P}^{\mathrm{dt}} & =2 k-1 \\
\mathbf{P}^{\mathrm{dt}} & =k^{2}
\end{aligned}
$$

Quadratic P-vs-UP gap

Warm-up example f :

- M is $k \times k$ matrix with entries in $\{0,1\}$
- $f(M)=1 \Longleftrightarrow M$ contains a unique all- $\mathbf{1}$ column

1	1	1	1	1	1
1		1	1	1	1
		1			1
					$?$
	1				1
1	1		1	1	1

$$
\begin{aligned}
\mathbf{N P}^{\mathrm{dt}} & =2 k-1 \\
\mathbf{P}^{\mathrm{dt}} & =k^{2}
\end{aligned}
$$

Quadratic P-vs-UP gap

Warm-up example f :

- M is $k \times k$ matrix with entries in $\{0,1\}$
- $f(M)=1 \Longleftrightarrow M$ contains a unique all- $\mathbf{1}$ column

1	1	1	1	1	1
1		1	1	1	1
		1			1
					0
	1				1
1	1		1	1	1

$$
\begin{aligned}
\mathbf{N P}^{\mathrm{dt}} & =2 k-1 \\
\mathbf{P}^{\mathrm{dt}} & =k^{2}
\end{aligned}
$$

Quadratic P-vs-UP gap

Warm-up example f :

- M is $k \times k$ matrix with entries in $\{0,1\}$
- $f(M)=1 \Longleftrightarrow M$ contains a unique all- $\mathbf{1}$ column

1	1	1	1	1	1
1	1	1	1	1	1
0	1	1	1	0	1
1	0	1	1	1	0
1	1	1	$?$	1	1
1	1	0	1	1	1

$$
\begin{aligned}
\mathbf{N P}^{\mathrm{dt}} & =2 k-1 \\
\mathbf{P}^{\mathrm{dt}} & =k^{2}
\end{aligned}
$$

Quadratic P-vs-UP gap

Actual gap example f :

■ M is $k \times k$ matrix with entries in $\{0,1\} \times([k] \times[k] \cup\{\perp\})$

- $f(M)=1 \Longleftrightarrow M$ contains a unique all-1 column that has a linked list through 0's in other columns

$\mathrm{UP}^{\mathrm{dt}} \approx 2 k-1$
$\mathrm{P}^{\mathrm{dt}} \approx k^{2}$

Quadratic P-vs-UP gap

Actual gap example f :

- M is $k \times k$ matrix with entries in $\{0,1\} \times([k] \times[k] \cup\{\perp\})$
- $f(M)=1 \Longleftrightarrow M$ contains a unique all-1 column that has a linked list through 0's in other columns

1_{\perp}	1_{\perp}	1_{\perp}			1_{\perp}
1_{\perp}					1_{\perp}
$?$					
1_{\perp}					
1_{\perp}				1_{\perp}	1_{\perp}
1_{\perp}	1_{\perp}		1_{\perp}	1_{\perp}	1_{\perp}

$\mathrm{UP}^{\mathrm{dt}} \approx 2 k-1$
$\mathrm{pdt}^{\mathrm{dt}} \approx k^{2}$

Quadratic P-vs-UP gap

Actual gap example f :

■ M is $k \times k$ matrix with entries in $\{0,1\} \times([k] \times[k] \cup\{\perp\})$

- $f(M)=1 \Longleftrightarrow M$ contains a unique all-1 column that has a linked list through 0's in other columns

1_{\perp}	1_{\perp}	1_{\perp}			1_{\perp}
1_{\perp}					1_{\perp}
0_{\perp}					
1_{\perp}					
1_{\perp}				1_{\perp}	1_{\perp}
1_{\perp}	1_{\perp}		1_{\perp}	1_{\perp}	1_{\perp}

$\mathrm{UP}^{\mathrm{dt}} \approx 2 k-1$
$\mathrm{pdt}^{\mathrm{dt}} \approx k^{2}$

Quadratic P-vs-UP gap

Actual gap example f :

- M is $k \times k$ matrix with entries in $\{0,1\} \times([k] \times[k] \cup\{\perp\})$
- $f(M)=1 \Longleftrightarrow M$ contains a unique all-1 column that has a linked list through 0's in other columns

1_{\perp}	1_{\perp}	1_{\perp}	1_{\perp}		1_{\perp}
1_{\perp}	1_{\perp}	1_{\perp}			1_{\perp}
0_{\perp}	1_{\perp}				
1_{\perp}	$?$			1_{\perp}	
1_{\perp}	1_{\perp}			1_{\perp}	1_{\perp}
1_{\perp}	1_{\perp}		1_{\perp}	1_{\perp}	1_{\perp}

$\mathrm{UP}^{\mathrm{dt}} \approx 2 k-1$

$\mathrm{pdt}^{\mathrm{dt}} \approx k^{2}$

Quadratic P-vs-UP gap

Actual gap example f :

- M is $k \times k$ matrix with entries in $\{0,1\} \times([k] \times[k] \cup\{\perp\})$
- $f(M)=1 \Longleftrightarrow M$ contains a unique all-1 column that has a linked list through 0's in other columns

1_{\perp}	1_{\perp}	1_{\perp}	1_{\perp}		1_{\perp}
1_{\perp}	1_{\perp}	1_{\perp}			1_{\perp}
0^{\prime}	1_{\perp}				
1_{\perp}	0			1_{\perp}	
1_{\perp}	1_{\perp}			1_{\perp}	1_{\perp}
1_{\perp}	1_{\perp}		1_{\perp}	1_{\perp}	1_{\perp}

$\mathrm{UP}^{\mathrm{dt}} \approx 2 k-1$

$\mathrm{pdt}^{\mathrm{dt}} \approx k^{2}$

Quadratic P-vs-UP gap

Actual gap example f :

- M is $k \times k$ matrix with entries in $\{0,1\} \times([k] \times[k] \cup\{\perp\})$

■ $f(M)=1 \Longleftrightarrow M$ contains a unique all-1 column that has a linked list through 0's in other columns

1_{\perp}	1_{\perp}	1_{\perp}	1_{\perp}	1_{\perp}	1_{\perp}
1_{\perp}	1_{\perp}	1_{\perp}			1_{\perp}
0^{-}	1_{\perp}	1_{\perp}			
1_{\perp}	0	1_{\perp}		1_{\perp}	
1_{\perp}	1_{\perp}	1_{\perp}	1_{\perp}	1_{\perp}	1_{\perp}
1_{\perp}	1_{\perp}	$?$	1_{\perp}	1_{\perp}	1_{\perp}

$\mathrm{UP}^{\mathrm{dt}} \approx 2 k-1$

$\mathrm{pdt}^{\mathrm{dt}} \approx k^{2}$

Quadratic P-vs-UP gap

Actual gap example f :

- M is $k \times k$ matrix with entries in $\{0,1\} \times([k] \times[k] \cup\{\perp\})$

■ $f(M)=1 \Longleftrightarrow M$ contains a unique all-1 column that has a linked list through 0's in other columns

1_{\perp}	1_{\perp}	1_{\perp}	1_{\perp}	1_{\perp}	1_{\perp}
1_{\perp}	1_{\perp}	1_{\perp}			1_{\perp}
0^{-}	1_{\perp}	1_{\perp}			
1_{\perp}	0	1_{\perp}		1_{\perp}	
1_{\perp}	1_{-}	1_{\perp}	1_{\perp}	1_{\perp}	1_{\perp}
1_{\perp}	1_{\perp}	0	1_{\perp}	1_{\perp}	1_{\perp}

$\mathrm{UP}^{\mathrm{dt}} \approx 2 k-1$

$\mathrm{pdt}^{\mathrm{dt}} \approx k^{2}$

Quadratic P-vs-UP gap

Actual gap example f :

- M is $k \times k$ matrix with entries in $\{0,1\} \times([k] \times[k] \cup\{\perp\})$

■ $f(M)=1 \Longleftrightarrow M$ contains a unique all-1 column that has a linked list through 0's in other columns

$1 \perp$	$1+$	$1+$	1 +	1」	1
$1 \perp$	$1+$	$1+$?	1」	1
0^{1+1}		$1_{+} 1_{\perp}$		${ }^{0}$	
$1+$	0	$1+$	1 +	1	
$1+$	1	$1+$			
$1+$	1	0			1

$\mathrm{UP}^{\mathrm{dt}} \approx 2 k-1$

$\mathrm{pdt}^{\mathrm{dt}} \approx k^{2}$

Quadratic P-vs-UP gap

Other separations inspired by our function

```
[Ambainis-Balodis-Belovs-Lee-Santha-Smotrovs]
(also [Mukhopadhyay-Sanyal]):
    - \(\mathbf{P}^{\mathbf{d t}}(f) \geq \mathbf{Z P} \mathbf{P}^{\mathbf{d t}}(f)^{2}\)
    Counterexample to Saks-Wigderson'86!
    - \(\mathbf{P}^{\mathbf{d t}}(f) \geq \mathbf{B Q P}^{\mathrm{dt}}(f)^{4}\)
    - \(\mathbf{Z P P}^{\mathbf{d t}}(f) \geq \mathbf{R P}^{\mathbf{d t}}(f)^{2}\)
[Ben-David]:
    - \(\mathbf{B P P}^{\mathbf{d t}}(f) \geq \mathbf{B Q P}^{\mathbf{d t}}(f)^{2.5}\)
```


Other query separations

- Theorem 2: $\quad\left\{\begin{aligned} \mathbf{U P} \mathbf{P}^{\mathbf{d t}}(f) & =k \\ \mathbf{P}^{\mathbf{d t}}(f) & =k^{2}\end{aligned}\right.$
- Theorem 1: $\quad\left\{\begin{aligned} \mathbf{2 U P} \mathbf{P}^{\mathbf{d t}}\left(\text { AND } \circ f^{k}\right) & =k^{2} \\ \mathbf{P}^{\mathbf{d} \mathbf{t}}\left(\text { AND } \circ f^{k}\right) & =k^{3}\end{aligned}\right.$

Power 1.5 gap—cf. $\log _{3} 4 \approx 1.26$ from [Savický'03 / Belovs'06]

- Theorem 3: $\exists f: \quad \operatorname{coNP}{ }^{\mathrm{dt}}(f) \geq \Omega\left(\mathbf{U P}^{\mathbf{d t}}(f)^{1.128}\right)$
\Longrightarrow Involves a delicate recursive construction

Step 2: Simulation theorems

Composed functions $f \circ g^{n}$

Examples: - Set-disjointness: OR $\circ \mathrm{AND}^{n}$

- Inner-product: XOR $\circ \mathrm{AND}^{n}$
- Equality: AND $\circ \neg$ XOR n

Composed functions $f \circ g^{n}$

In general: $g:\{0,1\}^{b} \times\{0,1\}^{b} \rightarrow\{0,1\}$ is a small gadget

- Alice holds $x \in\left(\{0,1\}^{b}\right)^{n}$
- Bob holds $y \in\left(\{0,1\}^{b}\right)^{n}$

Inputs x and y encode $z:=g^{n}(x, y)$

Composed functions $f \circ g^{n}$

Simulation Theorem Template:

Simulate cost- C protocol for $f \circ g^{n}$ in model $\mathbf{M}^{\text {cc }}$ using height- C decision tree for f in model \mathbf{M}^{dt}

$$
\text { i.e., } \quad \mathbf{M}^{\mathbf{c c}}\left(f \circ g^{n}\right) \approx \mathbf{M}^{\mathrm{dt}}\left(f \circ g^{n}\right)
$$

Composed functions $f \circ g^{n}$

Simulation Theorem Template:

Simulate cost- C protocol for $f \circ g^{n}$ in model $\mathbf{M}^{\text {cc }}$ using height- C decision tree for f in model \mathbf{M}^{dt}

$$
\text { i.e., } \quad \mathbf{M}^{\mathbf{c c}}\left(f \circ g^{n}\right) \approx \mathbf{M}^{\mathbf{d t}}\left(f \circ g^{n}\right)
$$

Known simulation theorems

$$
\begin{array}{lll}
\text { Model } & \text { Gadget } & \text { Reference } \\
\hline \mathbf{P} & \begin{array}{l}
g(x, y):=y_{x} \\
\text { where }|y|=n^{\Theta(1)}
\end{array} & \text { [Raz-McKenzie, FOCS'97] } \\
\text { NP } & \begin{array}{l}
g(x, y):=\langle x, y\rangle \bmod 2 \\
\text { where }|x|,|y|=\Theta(\log n)
\end{array} & \text { [GLMZW, STOC'15] } \\
\text { PP } & \text { Constant-size } g & \begin{array}{l}
\text { [Sherstov, STOC'08], } \\
\text { [Shi-Zhu, QIC'09] }
\end{array} \\
\hline
\end{array}
$$

Simulation for P (Our formulation):

$$
\mathbf{P}^{\mathbf{c c}}\left(f \circ g^{n}\right)=\mathbf{P}^{\mathbf{d t}}(f) \cdot \Theta(\log n)
$$

Known simulation theorems

Model	Gadget	Reference
\mathbf{P}	$g(x, y):=y_{x}$ where $\|y\|=n^{\Theta(1)}$	[Raz-McKenzie, FOCS'97]
NP	$g(x, y):=\langle x, y\rangle \bmod 2$ where $\|x\|,\|y\|=\Theta(\log n)$	[GLMZW, STOC'15]
PP	Constant-size g	[Sherstov, STOC'08],
	[Shi-Zhu, QIC'09]	

Communication:

- Theorem 1: $\exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq \tilde{\Omega}\left(\mathbf{2} \mathbf{U P}^{\mathbf{c c}}(F)^{1.5}\right)$
- Theorem 2: $\exists F: \quad \mathbf{P}^{\mathbf{c c}}(F) \geq \tilde{\Omega}\left(\mathbf{U P}^{\mathbf{c c}}(F)^{2}\right)$
- Theorem 3: $\exists F: \quad \operatorname{coNP}{ }^{\mathbf{c c}}(F) \geq \Omega\left(\mathbf{U P}^{\mathbf{c c}}(F)^{1.128}\right)$

$$
F=f \circ g^{n}
$$

Decision tree:

- Theorem 1: $\exists f: \quad \mathbf{P}^{\mathbf{d t}}(f) \geq \tilde{\Omega}\left(\mathbf{2} \mathbf{U P}^{\mathbf{d t}}(f)^{\mathbf{1 . 5}}\right)$
- Theorem 2: $\exists f: \quad \mathbf{P}^{\mathbf{d t}}(f) \geq \tilde{\Omega}\left(\mathbf{U P}^{\mathbf{d t}}(f)^{\mathbf{2}}\right)$
- Theorem 3: $\exists f: \quad \boldsymbol{c o N P}^{\mathbf{d t}}(f) \geq \Omega\left(\mathbf{U P}^{\mathbf{d t}}(f)^{1.128}\right)$

$$
F=f \circ g^{n}
$$

Future directions

Future directions

In progress:

- Find an F with $\mathbf{B P P}{ }^{\mathbf{c c}}(F) \gg \mathbf{2 U P} \mathbf{P}^{\mathbf{c c}}(F)$

Solved for query complexity: [Kothari-Racicot-Desloges-Santha, RANDOM'15]

Open problems: - Simulation theorem for BPP

- Improve gadget size down to $b=O(1)$ (Gives new proof of $\Omega(n)$ bound for disjointness)

Big challenges:

- Log-rank conjecture
- Lower bounds against $\mathbf{P H}^{\mathbf{c c}}$ (or $\mathbf{A M}^{\mathbf{c c}}$)

Future directions

In progress:

- Find an F with $\mathbf{B P P}^{\mathbf{c c}}(F) \gg \mathbf{2} \mathbf{U P}^{\mathbf{c c}}(F)$ Solved for query complexity: [Kothari-Racicot-Desloges-Santha, RANDOM'15]

Open problems: - Simulation theorem for BPP

- Improve gadget size down to $b=O(1)$ (Gives new proof of $\Omega(n)$ bound for disjointness)

Big challenges:

- Log-rank conjecture
- Lower bounds against $\mathbf{P H}^{\mathbf{c c}}$ (or $\mathbf{A M}^{\mathbf{c c}}$)

Cheers!

