

Synthesizing Minimal Tile Sets for Patterned DNA Self-Assembly

Mika Göös & Pekka Orponen
Aalto University (School of Science and Technology)

Outline

- Previous Study
- 2 Problem Definition
- 3 Approach of Ma & Lombardi
- 4 Our Contributions

Previous Study

Shapes modulo Scale

[Soloveichik & Winfree 2004]

Unsolvable

Previous Study

Shapes modulo Scale

[Soloveichik & Winfree 2004]

Unsolvable

Shapes

[Adleman et al. 2002]

NP-hard

Previous Study

Shapes modulo Scale

[Soloveichik & Winfree 2004]

Unsolvable

Shapes

[Adleman et al. 2002]

NP-hard

Patterns

[Ma & Lombardi 2008]

Not known?

Input

A *k*-colouring $c : [m] \times [n] \rightarrow [k]$

Output

Input

A *k*-colouring $c : [m] \times [n] \rightarrow [k]$

Output

Input

A *k*-colouring $c : [m] \times [n] \rightarrow [k]$

Output

Input

A *k*-colouring $c : [m] \times [n] \rightarrow [k]$

Output

Input

A *k*-colouring $c : [m] \times [n] \rightarrow [k]$

Output

Input

A *k*-colouring $c : [m] \times [n] \rightarrow [k]$

Output

Input

A *k*-colouring $c : [m] \times [n] \rightarrow [k]$

Output

Input

A *k*-colouring $c : [m] \times [n] \rightarrow [k]$

Output

Input

A *k*-colouring $c : [m] \times [n] \rightarrow [k]$

Output

- **Given:** A *k*-colouring $c : [m] \times [n] \rightarrow [k]$.
 - **Find:** A tile assembly system $\mathscr{T} = (T, \mathcal{S}, s, 2)$ s.t.
 - P1. The tiles in T have bonding strength 1.
 - P2. The domain of S is $[0, m] \times \{0\} \cup \{0\} \times [0, n]$ and all the terminal assemblies have the domain $[0, m] \times [0, n]$.
 - P3. There exists a colouring $d: T \to [k]$ such that for each terminal assembly $\mathcal{A} \in \operatorname{Term} \mathscr{T}$ we have $d(\mathcal{A}(x,y)) = c(x,y)$ for all $(x,y) \in [m] \times [n]$.

Approach of Ma & Lombardi

		0			4			7			10			13			16	
3	3		1	1		5	5		8	8		11	11		14	14		17
		2			6			9			12			15			18	
		2			6			9			12			15			18	
21	21		19	19		22	22		24	24		26	26		28	28		30
		20			23			25			27			29			31	
		20						25			27			29			31	
34	34		32	32		35	35		37	37		39	39		41	41		43
		33			36			38			40			42			44	
		33					l											
47	47		45	45		48	48		50	50		52	52		54	54		56
		46			49			51			53			55			57	
		46			49			51			53			55			57	
60	60		58	58		61	61		63	63		65	65		67	67		69
		59			62			64			66			68			70	
		59			62			64			66			68			70	

Approach of Ma & Lombardi

	0		4			7			10			13			16			
3	3		1	1		5	5		8	8		11	11		14	14		17
		2			6			9			12			15			18	
		2			6			9			12			15			18	
21	21		19	19		22	22		24	24		26	26		28	28		30
		20			23			25			27						31	
		20			23			25									31	
34	34		32	32		35	35		37	37		39	39		41	41	4	13
		33						38									44	
		33									40						44	
47	47		45	45		48	48		50	50		52	52		54	54		56
		46						51			53						57	
		46									53			55			57	
60	60		58	58		61	61		63	63		65	65		67	67		59
		59			62			64			66			68			70	
	59		59 62		64			66			68			70				

Approach of Ma & Lombardi

		0		4		7		10			13		16	
3	3	1	1	5	5	8	8	1	1	11	14	14	17	
		2		6		9		12			15		18	
		2		6		9		12			15		18	
21	21	19	19	22	22	24	24	2	26	26	28	3 28	30	
		20		23		25		27			29		31	
				23		25					29			
34	34	32	32	35		37				39	41	41	43	
			36								42		44	
						38			_					
47						50								
		46				51		53			<u>55</u>		57 57	
(0						51 63					55			
60														
		59 59	62 62		64 64		66				68 68	_	70 70	
		39	'	02		04		00			00		70	

To minimize Tile set size:

- Merge glues
- Merge tiles

If conflicts arise:

Continue merging!

Our Contributions

We present

- Extension of the work of Ma & Lombardi
- Branch & Bound algorithm
- Pruning heuristics

Determinism

Lemma: Minimal solutions to the PATS problem are deterministic

Determinism

Lemma: Minimal solutions to the PATS problem are deterministic

Contructible partition of $[m] \times [n]$

is **coarser** than

Contructible partition

Our B&B algorithm

- Node-disjoint search tree
- Uses memory poly(mn)
- Branching only on constructible partitions

Our B&B algorithm

- Node-disjoint search tree
 - Uses memory poly(mn)
 - 3 Branching *only* on constructible partitions
 - Cheap bounding function

Running time on random 2-coloured instances

Conclusions

PATS problem remains challenging

- Open Problems:
 - Is it NP-hard?
 - 2 Faster algorithms?
 - 3 Generalize to infinite finite-period patterns
- PATS is of practical importance

Thank you!