

## Rectangles Are Nonnegative Juntas (An approach to communication lower bounds)

<u>Mika Göös</u>, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman

Rectangles Are Nonnegative Juntas





### **Compute:** F(x, y)

Mika Göös (Univ. of Toronto)

Rectangles Are Nonnegative Juntas



**Examples:** 

- Set-disjointness:  $OR \circ AND^n$ 
  - Inner-product: XOR ∘ AND<sup>n</sup>
- Equality:  $AND \circ \neg XOR^n$



**In general:**  $g: \{0,1\}^b \times \{0,1\}^b \rightarrow \{0,1\}$  is a small gadget

■ Alice holds  $x \in (\{0,1\}^b)^n$ ■ Bob holds  $y \in (\{0,1\}^b)^n$ 

Inputs *x* and *y* encode  $z \coloneqq g^n(x, y)$ 



### Holy grail (Conjecture):

Simulate **cost-***d* randomised protocol for  $f \circ g^n$  using **height-***d* randomised decision tree for *f* 

*i.e.*, **BPP<sup>cc</sup>**
$$(f \circ g^n) \approx$$
**BPP<sup>dt</sup>** $(f)$ 



### Holy grail (Conjecture):

Simulate **cost-***d* randomised protocol for  $f \circ g^n$  using **height-***d* randomised decision tree for *f* 

*i.e.*, **BPP<sup>cc</sup>**
$$(f \circ g^n) \approx$$
**BPP<sup>dt</sup>** $(f)$ 



### **Our result:**

Simulate **cost-***d* randomised protocol for  $f \circ g^n$  using height-*d* randomised decision tree for *f* 

... degree-*d* conical junta ...

**Conical** *d*-junta:

Nonnegative combination of *d*-conjunctions EXAMPLE:  $0.4 \cdot z_1 \bar{z}_2 + 0.66 \cdot z_2 \bar{z}_3 + 0.35 \cdot z_3 \bar{z}_1$ 

**Conical** *d*-junta:

Nonnegative combination of *d*-conjunctions EXAMPLE:  $0.4 \cdot z_1 \overline{z}_2 + 0.66 \cdot z_2 \overline{z}_3 + 0.35 \cdot z_3 \overline{z}_1$ 



### Conical *d*-junta:

Nonnegative combination of *d*-conjunctions EXAMPLE:  $0.4 \cdot z_1 \overline{z}_2 + 0.66 \cdot z_2 \overline{z}_3 + 0.35 \cdot z_3 \overline{z}_1$ 

#### Junta Theorem:

(*f* is *any* partial function) *g* is inner-product on Θ(log *n*) bits
Π is cost-*d* randomised protocol for *f* ∘ *g<sup>n</sup>*↓
There exists a conical *d*-junta *h* s.t. ∀*z* ∈ {0,1}<sup>n</sup>:
Pr <sub>(x,y)∼(g<sup>n</sup>)<sup>-1</sup>(z)</sub> [Π(x, y) accepts] ≈ h(z)

### Conical *d*-junta:

Nonnegative combination of *d*-conjunctions EXAMPLE:  $0.4 \cdot z_1 \overline{z}_2 + 0.66 \cdot z_2 \overline{z}_3 + 0.35 \cdot z_3 \overline{z}_1$ 

### Junta Theorem:

(*f* is *any* partial function)
 *g* is inner-product on Θ(log *n*) bits
 Π is cost-*d* randomised protocol for *f* ∘ *g<sup>n</sup>* ↓
 There exists a conical *d*-junta *h* s.t. ∀*z* ∈ {0,1}<sup>n</sup>:
 Pr [Π(*x*, *y*) accepts] ≈ *h*(*z*)

Cf: • Polynomial approximation [Razborov, Sherstov, Shi–Zhu,...] • Sherali–Adams vs. LPs [Chan–Lee–Raghavendra–Steurer]



### Communication matrix of $f \circ g^n$





Encode  $z \in \{0,1\}^n$  randomly:  $(\boldsymbol{x}, \boldsymbol{y}) \sim (g^n)^{-1}(z)$ 



Encode  $z \in \{0,1\}^n$  randomly:  $(\boldsymbol{x}, \boldsymbol{y}) \sim (g^n)^{-1}(z)$ 

Want to understand  $\Pr[\Pi(x, y) \text{ accepts}]$ 



Encode  $z \in \{0,1\}^n$  randomly:  $(\boldsymbol{x}, \boldsymbol{y}) \sim (g^n)^{-1}(z)$ 

# Want to understand $\Pr[(x, y) \in R]$



Encode  $z \in \{0,1\}^n$  randomly:  $(\boldsymbol{x}, \boldsymbol{y}) \sim (g^n)^{-1}(z)$ 

### Main Theorem:

 $\exists \text{ conical } d\text{-junta } h,$  $\Pr[(\mathbf{x}, \mathbf{y}) \in R] \approx h(z)$ 



Communication matrix of  $g^n$ 

Encode  $z \in \{0,1\}^n$  randomly:  $(\boldsymbol{x}, \boldsymbol{y}) \sim (g^n)^{-1}(z)$ 

### Main Theorem:

 $\exists \text{ conical } d\text{-junta } h,$  $\Pr[(\mathbf{x}, \mathbf{y}) \in R] \approx h(z)$ 

**Proof:** Partition *R* into "conjunctions" *R*':

 $g^n(R') = 110 * * * * * *$ 

Communication-to-query simulation for NP:

$$\mathbf{NP^{cc}}(f \circ g^n) = \mathbf{NP^{dt}}(f) \cdot \Theta(b)$$

... recall  $b = \Theta(\log n)$ 

Communication-to-query simulation for NP:

$$\mathbf{NP^{cc}}(f \circ g^n) = \mathbf{NP^{dt}}(f) \cdot \Theta(b)$$
...recall  $b = \Theta(\log n)$ 

Conical *d*-junta:  $0.4 \cdot z_1 \bar{z}_2 + 0.66 \cdot z_2 \bar{z}_3 + 0.35 \cdot z_3 \bar{z}_1$ 

*d*-DNF:  $z_1 \overline{z}_2 \lor z_2 \overline{z}_3 \lor z_3 \overline{z}_1$ 





Communication-to-query simulation for NP:

$$\mathbf{NP^{cc}}(f \circ g^n) = \mathbf{NP^{dt}}(f) \cdot \Theta(b)$$
  
...recall  $b = \Theta(\log n)$ 



## Resolving open problems

Query lower bound  $\rightsquigarrow$  Communication lower bound

 From [Böhler–Glaßer–Meister '06]: SBP<sup>cc</sup> is not closed under intersection

SBP: Small bounded-error computations

• *yes*-inputs accepted with prob.  $\geq \alpha$ 

**no**-inputs accepted with prob.  $\leq \alpha/2$ 

## Resolving open problems

Query lower bound  $\rightsquigarrow$  Communication lower bound

 From [Böhler–Glaßer–Meister '06]: SBP<sup>cc</sup> is not closed under intersection

2 From [Klauck'03]:

Corruption does not characterise  $MA^{cc}$ *i.e.*,  $MA^{cc} \subsetneq SBP^{cc}$ 

## Resolving open problems

### Query lower bound $\rightsquigarrow$ Communication lower bound

 From [Böhler–Glaßer–Meister '06]: SBP<sup>cc</sup> is not closed under intersection

### 2 From [Klauck'03]: Corruption does not characterise MA<sup>cc</sup> *i.e.*, MA<sup>cc</sup> ⊊ SBP<sup>cc</sup>

- From [Kol–Moran–Shpilka–Yehudayoff'14]: No efficient error amplification for *e*-rank<sub>+</sub>
- 4 From [Yannakakis'88]: (Subsequent work) Clique vs. Independent Set problem *i.e.*,  $coNP^{cc}(F) \gg UP^{cc}(F)$

## Summary

### Main result: Junta Theorem

 $\implies$  Pr[ $\Pi(\boldsymbol{x}, \boldsymbol{y})$  accepts]  $\approx$  Conical junta of z

### **Open problems**

- More applications of Junta Theorem?
- Simulation theorems for **BPP**?
- Improve gadget size down to b = O(1) (Would give new proof of Ω(n) bound for set-disjointness)

## Summary

### Main result: Junta Theorem

 $\implies$  Pr[ $\Pi(x, y)$  accepts]  $\approx$  Conical junta of z

### **Open problems**

- More applications of Junta Theorem?
- Simulation theorems for **BPP**?
- Improve gadget size down to b = O(1) (Would give new proof of Ω(n) bound for set-disjointness)

## **Cheers!**