

Rectangles Are Nonnegative Juntas

(An approach to communication lower bounds)

Mika Göös, Shachar Lovett, Raghu Meka,
Thomas Watson, and David Zuckerman

Alice
$x \in\{0,1\}^{n}$

Bob
$y \in\{0,1\}^{n}$

Composed functions $f \circ g^{n}$

Examples: - Set-disjointness: OR $\circ \mathrm{AND}^{n}$

- Inner-product: XOR $\circ \mathrm{AND}^{n}$
- Equality: AND $\circ \neg \mathrm{XOR}^{n}$

Composed functions $f \circ g^{n}$

In general: $g:\{0,1\}^{b} \times\{0,1\}^{b} \rightarrow\{0,1\}$ is a small gadget

- Alice holds $x \in\left(\{0,1\}^{b}\right)^{n}$

■ Bob holds $y \in\left(\{0,1\}^{b}\right)^{n}$
Inputs x and y encode $z:=g^{n}(x, y)$

Composed functions $f \circ g^{n}$

Holy grail (Conjecture):

Simulate cost- d randomised protocol for $f \circ g^{n}$ using height- d randomised decision tree for f

$$
\text { i.e., } \quad \mathbf{B P} \mathbf{P}^{\mathbf{c c}}\left(f \circ g^{n}\right) \approx \mathbf{B} \mathbf{P P}^{\mathbf{d t}}(f)
$$

Composed functions $f \circ g^{n}$

Holy grail (Conjecture):

Simulate cost- d randomised protocol for $f \circ g^{n}$ using height- d randomised decision tree for f

$$
\text { i.e., } \quad \mathbf{B P} \mathbf{P}^{\mathbf{c c}}\left(f \circ g^{n}\right) \approx \mathbf{B P P}^{\mathbf{d t}}(f)
$$

Composed functions $f \circ g^{n}$

Our result:

Simulate cost- d randomised protocol for $f \circ g^{n}$ using height-drandomised decision tree for f
... degree-d conical junta ...

Main structure theorem

Conical d-junta:

Nonnegative combination of d-conjunctions
EXAMPLE: $0.4 \cdot z_{1} \bar{z}_{2}+0.66 \cdot z_{2} \bar{z}_{3}+0.35 \cdot z_{3} \bar{z}_{1}$

Main structure theorem

Conical d-junta:

Nonnegative combination of d-conjunctions EXAMPLE: $0.4 \cdot z_{1} \bar{z}_{2}+0.66 \cdot z_{2} \bar{z}_{3}+0.35 \cdot z_{3} \bar{z}_{1}$

Main structure theorem

Conical d-junta:
Nonnegative combination of d-conjunctions
EXAMPLE: $0.4 \cdot z_{1} \bar{z}_{2}+0.66 \cdot z_{2} \bar{z}_{3}+0.35 \cdot z_{3} \bar{z}_{1}$

Junta Theorem:

- (f is any partial function)
- g is inner-product on $\Theta(\log n)$ bits
- Π is cost- d randomised protocol for $f \circ g^{n}$
\Downarrow
There exists a conical d-junta h s.t. $\forall z \in\{0,1\}^{n}$:

$$
\operatorname{Pr}_{(x, y) \sim\left(g^{n}\right)^{-1}(z)}[\Pi(x, y) \text { accepts }] \approx h(z)
$$

Main structure theorem

Conical d-junta:

Nonnegative combination of d-conjunctions
Example: $0.4 \cdot z_{1} \bar{z}_{2}+0.66 \cdot z_{2} \bar{z}_{3}+0.35 \cdot z_{3} \bar{z}_{1}$

Junta Theorem:

- (f is any partial function)
- g is inner-product on $\Theta(\log n)$ bits
- Π is cost- d randomised protocol for $f \circ g^{n}$
\Downarrow
There exists a conical d-junta h s.t. $\forall z \in\{0,1\}^{n}$:

$$
\operatorname{Pr}_{(x, y) \sim\left(g^{n}\right)^{-1}(z)}[\Pi(x, y) \text { accepts }] \approx h(z)
$$

Cf: • Polynomial approximation [Razborov, Sherstov, Shi-Zhu,...]

- Sherali-Adams vs. LPs [Chan-Lee-Raghavendra-Steurer]

Junta Theorem in pictures

Communication matrix of $f \circ g^{n}$

Junta Theorem in pictures

Communication matrix of g^{n}

Junta Theorem in pictures

Encode $z \in\{0,1\}^{n}$ randomly:

$$
(x, y) \sim\left(g^{n}\right)^{-1}(z)
$$

Communication matrix of g^{n}

Junta Theorem in pictures

Encode $z \in\{0,1\}^{n}$ randomly:

$$
(x, y) \sim\left(g^{n}\right)^{-1}(z)
$$

Want to understand $\operatorname{Pr}[\Pi(x, y)$ accepts $]$

Communication matrix of g^{n}

Junta Theorem in pictures

Encode $z \in\{0,1\}^{n}$ randomly:

$$
(x, y) \sim\left(g^{n}\right)^{-1}(z)
$$

Want to understand

$$
\operatorname{Pr}[(x, y) \in R]
$$

Communication matrix of g^{n}

Junta Theorem in pictures

Encode $z \in\{0,1\}^{n}$ randomly:

$$
(x, y) \sim\left(g^{n}\right)^{-1}(z)
$$

Main Theorem:

\exists conical d-junta h,

$$
\operatorname{Pr}[(x, y) \in R] \approx h(z)
$$

Communication matrix of g^{n}

Junta Theorem in pictures

Communication matrix of g^{n}

Encode $z \in\{0,1\}^{n}$ randomly:

$$
(x, y) \sim\left(g^{n}\right)^{-1}(z)
$$

Main Theorem:

\exists conical d-junta h,
$\operatorname{Pr}[(x, y) \in R] \approx h(z)$

Proof: Partition R into "conjunctions" R^{\prime} :

$$
g^{n}\left(R^{\prime}\right)=110 * * * * * *
$$

Corollaries-Simulation Theorems

Communication-to-query simulation for NP:

$$
\mathbf{N P}^{\mathbf{c c}}\left(f \circ g^{n}\right)=\mathbf{N} \mathbf{P}^{\mathbf{d t}}(f) \cdot \Theta(b)
$$

Corollaries-Simulation Theorems

Communication-to-query simulation for NP:

$$
\mathbf{N P}^{\mathbf{c c}}\left(f \circ g^{n}\right)=\mathbf{N P}^{\mathbf{d t}}(f) \cdot \Theta(b)
$$

Conical d-junta: $0.4 \cdot z_{1} \bar{z}_{2}+0.66 \cdot z_{2} \bar{z}_{3}+0.35 \cdot z_{3} \bar{z}_{1}$
d-DNF:
$z_{1} \bar{z}_{2} \vee$
$z_{2} \bar{z}_{3} \vee$
$z_{3} \bar{z}_{1}$

Corollaries-Simulation Theorems

Communication-to-query simulation for NP:

$$
\mathbf{N P}^{\mathbf{c c}}\left(f \circ g^{n}\right)=\mathbf{N} \mathbf{P}^{\mathbf{d t}}(f) \cdot \Theta(b)
$$

Corollaries-Simulation Theorems

Communication-to-query simulation for NP:

$$
\mathbf{N P}^{\mathbf{c c}}\left(f \circ g^{n}\right)=\mathbf{N P}^{\mathbf{d t}}(f) \cdot \Theta(b)
$$

Resolving open problems

Query lower bound \sim Communication lower bound

1 From [Böhler-Glaßer-Meister'06]: $\mathbf{S B P}{ }^{\mathbf{c c}}$ is not closed under intersection

SBP: Small bounded-error computations

- yes-inputs accepted with prob. $\geq \alpha$
- no-inputs accepted with prob. $\leq \alpha / 2$

Resolving open problems

Query lower bound \sim Communication lower bound

1 From [Böhler-Glaßer-Meister'06]: $\mathbf{S B P}{ }^{\mathbf{c c}}$ is not closed under intersection

2 From [Klauck'03]:
Corruption does not characterise $\mathbf{M A}{ }^{\mathbf{c c}}$ i.e., $\mathbf{M A}^{\mathbf{c c}} \subsetneq \mathbf{S B P}^{\mathbf{c c}}$

Resolving open problems

Query lower bound \leadsto Communication lower bound

1 From [Böhler-Glaßer-Meister'06]: $\mathbf{S B P}{ }^{\mathbf{c c}}$ is not closed under intersection

2 From [Klauck'03]:
Corruption does not characterise $\mathbf{M A}{ }^{\mathbf{c c}}$ i.e., $\mathbf{M A}^{\mathbf{c c}} \subsetneq \mathbf{S B P}^{\mathbf{c c}}$

3 From [Kol-Moran-Shpilka-Yehudayoff'14]:
No efficient error amplification for ϵ-rank ${ }_{+}$
4 From [Yannakakis'88]: (Subsequent work)
Clique vs. Independent Set problem
i.e., $\boldsymbol{\operatorname { c o N P }}{ }^{\mathbf{c c}}(F) \gg \mathbf{U} \mathbf{P}^{\mathbf{c c}}(F)$

Summary

Main result: Junta Theorem

- Let $g=$ inner-product on $b=\Theta(\log n)$ bits
- Let $(x, y) \sim\left(g^{n}\right)^{-1}(z)$
$\Longrightarrow \operatorname{Pr}[\Pi(x, y)$ accepts $] \approx$ Conical junta of z

Open problems

- More applications of Junta Theorem?

■ Simulation theorems for BPP?

- Improve gadget size down to $b=O(1)$ (Would give new proof of $\Omega(n)$ bound for set-disjointness)

Summary

Main result: Junta Theorem

- Let $g=$ inner-product on $b=\Theta(\log n)$ bits
- Let $(x, y) \sim\left(g^{n}\right)^{-1}(z)$
$\Longrightarrow \operatorname{Pr}[\Pi(x, y)$ accepts $] \approx$ Conical junta of z

Open problems

- More applications of Junta Theorem?
- Simulation theorems for BPP?
- Improve gadget size down to $b=O(1)$ (Would give new proof of $\Omega(n)$ bound for set-disjointness)

Cheers!

