Communication Complexity of Set-disjointness for All Probabilities

Mika Göös \& Thomas Watson
University of Toronto

Communication complexity?

Communication complexity?

Set-disjointness: $x \cap y=\varnothing$?

Communication complexity?

Alice

$$
x \subseteq[n]
$$

Bob

$$
y \subseteq[n]
$$

Set-disjointness: $x \cap y=\varnothing$?

[Kalyanasundaram-Schnitger'92], [Razborov'92], [Bar-Yossef et al.'04] ...

Main result

Bounded-error model:

- yes-inputs accepted with prob. $\geq 99 \%$
- no-inputs accepted with prob. $\leq 1 \%$

Main result

Our focus: Arbitrary probabilities $\alpha(n)>\beta(n)$:

- yes-inputs accepted with prob. $\geq \alpha$
- no-inputs accepted with prob. $\leq \beta$

Main result

Our focus: Arbitrary probabilities $\alpha(n)>\beta(n)$:

- yes-inputs accepted with prob. $\geq \alpha$
- no-inputs accepted with prob. $\leq \beta$

■ Public vs. private coins

Tight bound: $\quad \Theta(n \cdot(1-\beta / \alpha))$

Simplifies: [Braun et al., FOCS'12]: EFs for max-clique
[Braverman-Moitra, STOC'13]: $\alpha=1 / 2+\epsilon, \beta=1 / 2-\epsilon$

Main result

Our focus: Arbitrary probabilities $\alpha(n)>\beta(n)$:

- yes-inputs accepted with prob. $\geq \alpha$
- no-inputs accepted with prob. $\leq \beta$
- Public vs. private coins

Tight bound: $\quad \Theta(n \cdot(1-\beta / \alpha))$

Simplifies: [Braun et al., FOCS'12]: EFs for max-clique
[Braverman-Moitra, STOC'13]: $\alpha=1 / 2+\epsilon, \beta=1 / 2-\epsilon$

Key insight: \quad Suffices to understand case $\beta=\alpha / 2$

SBP: Case $\beta=\alpha / 2$

SBP: Small bounded-error computations

- yes-inputs accepted with prob. $\geq \alpha$
- no-inputs accepted with prob. $\leq \alpha / 2$

SBP: Case $\beta=\alpha / 2$

SBP: Small bounded-error computations

- yes-inputs accepted with prob. $\geq \alpha$
- no-inputs accepted with prob. $\leq \alpha / 2$

New: $\quad \mathbf{S B P}(f)=\min _{\alpha(n)>0} \mathrm{R}_{\alpha, \alpha / 2}^{\text {pub }}(f)+\log (1 / \alpha)$

SBP: Case $\beta=\alpha / 2$

SBP: Small bounded-error computations

■ yes-inputs accepted with prob. $\geq \alpha$

- no-inputs accepted with prob. $\leq \alpha / 2$

New: $\quad \mathbf{S B P}(f)=\min _{\alpha(n)>0} \mathrm{R}_{\alpha, \alpha / 2}^{\mathrm{pub}}(f)+\log (1 / \alpha)$

Compare: $\quad \mathbf{P P}(f)=\min _{\epsilon(n)>0} \mathrm{R}_{1 / 2+\epsilon, 1 / 2-\epsilon}^{\text {pub }}(f)+\log (1 / \epsilon)$

SBP: Case $\beta=\alpha / 2$

SBP: Small bounded-error computations

- yes-inputs accepted with prob. $\geq \alpha$
- no-inputs accepted with prob. $\leq \alpha / 2$

$$
\text { New: } \quad \begin{aligned}
\quad \operatorname{SBP}(f) & =\min _{\alpha(n)>0} \mathrm{R}_{\alpha, \alpha / 2}^{\mathrm{pub}}(f)+\log (1 / \alpha) \\
\mathbf{U S B P}(f) & =\min _{\alpha(n)>0} \mathrm{R}_{\alpha, \alpha / 2}^{\text {priv }}(f) \\
\text { Compare: } \quad \operatorname{PP}(f) & =\min _{\epsilon(n)>0} \mathrm{R}_{1 / 2+\epsilon, 1 / 2-\epsilon}^{\text {pub }}(f)+\log (1 / \epsilon) \\
\operatorname{UPP}(f) & =\min _{\epsilon(n)>0} \mathrm{R}_{1 / 2+\epsilon, 1 / 2-\epsilon}^{\text {priv }}(f)
\end{aligned}
$$

SBP in context

[Klauck'07]: \quad PP $=$ Disc
[Klauck'03]: $\quad \mathbf{M A} \subseteq$ Corr $\subseteq \mathbf{A M}$

SBP in context

[Klauck'07]: \quad PP $=$ Disc
[Klauck'03]: $\quad \mathbf{M A} \subseteq$ Corr $\subseteq \mathbf{A M}$

Results for SBP and USBP

Theorem: $\quad \mathbf{S B P}(f)=\Theta(\operatorname{Corr}(f))$

Results for SBP and USBP

Theorem: $\quad \mathbf{S B P}(f)=\Theta(\operatorname{Corr}(f))$

Corruption bound:

- Let $\mu_{\text {yes }}$ and $\mu_{\text {no }}$ be supported on $f^{-1}(1)$ and $f^{-1}(0)$
- Rectangle R is 1 -biased iff $\mu_{\text {yes }}(R) \geq 2 \cdot \mu_{\mathrm{no}}(R)$
$■ \operatorname{Corr}\left(f, \mu_{\text {yes }}, \mu_{\mathrm{no}}\right)=\max \Delta$ such that all 1-biased R have size $\mu_{\text {yes }}(R) \leq 2^{-\Delta}$

Results for SBP and USBP

Theorem: $\quad \mathbf{S B P}(f)=\Theta(\operatorname{Corr}(f))$

Corruption bound:

- Let $\mu_{\text {yes }}$ and $\mu_{\text {no }}$ be supported on $f^{-1}(1)$ and $f^{-1}(0)$
- Rectangle R is 1 -biased iff $\mu_{\text {yes }}(R) \geq 2 \cdot \mu_{\mathrm{no}}(R)$
$■ \operatorname{Corr}\left(f, \mu_{\text {yes }}, \mu_{\mathrm{no}}\right)=\max \Delta$ such that all 1-biased R have size $\mu_{\text {yes }}(R) \leq 2^{-\Delta}$
$■ \operatorname{Corr}(f)=\max _{\mu_{\mathrm{yes}}, \mu_{\mathrm{no}}} \operatorname{Corr}\left(f, \mu_{\mathrm{yes}}, \mu_{\mathrm{no}}\right)$

Results for SBP and USBP

Theorem: $\quad \mathbf{S B P}(f)=\Theta(\operatorname{Corr}(f))$

Corollary: $\operatorname{SBP}($ Disj $)=\Omega(n)$

Results for SBP and USBP

Theorem: $\quad \mathbf{S B P}(f)=\Theta(\operatorname{Corr}(f))$

Corollary: $\operatorname{SBP}($ Disj $)=\Omega(n)$

Theorem: $\operatorname{USBP}(\operatorname{Disj})=\Omega(n)$

Simple proof of main theorem

Proof of $\Omega(n \cdot(1-\beta / \alpha))$
1 Start with (α, β)-protocol Π
2 And-amplify into $\left(\alpha^{k}, \beta^{k}\right)$-protocol Π^{k}
3 Then Π^{k} is an SBP protocol for $k=(1-\beta / \alpha)^{-1}$
4 Hence $\left|\Pi^{k}\right| \geq \Omega(n)$
5 Hence $|\Pi| \geq \Omega(n / k)=\Omega(n \cdot(1-\beta / \alpha))$

Simple proof of main theorem

Proof of $\Omega(n \cdot(1-\beta / \alpha))$

1 Start with (α, β)-protocol Π
2 And-amplify into $\left(\alpha^{k}, \beta^{k}\right)$-protocol Π^{k}
3 Then Π^{k} is an SBP protocol for $k=(1-\beta / \alpha)^{-1}$
4 Hence $\left|\Pi^{k}\right| \geq \Omega(n)$
5 Hence $|\Pi| \geq \Omega(n / k)=\Omega(n \cdot(1-\beta / \alpha))$

Note: And-amplification for nonnegative rank
1 Start with nonnegative matrix M
2 Raise entries to power k
3 Basic fact: $\operatorname{rank}_{+}\left(M^{(k)}\right) \leq \operatorname{rank}_{+}(M)^{k}$

Proof ideas (for experts)

Theorem: $\quad \mathbf{S B P}(f)=\Theta(\operatorname{Corr}(f))$

- Analogous to [Klauck'07]
- Uses minimax

Proof ideas (for experts)

Theorem: $\quad \operatorname{USBP}(\operatorname{Disj})=\Omega(n)$

■ Information complexity framework [Bar-Yossef et al.'04]

- New challenge: Transcript useless $1-\alpha$ of the time Solution: Study transcripts conditioned on acceptance
- Cannot prove $\Omega(1)$ info lower bound for 2-bit NAND function!

Proof ideas (for experts)

Theorem: $\quad \operatorname{USBP}(\mathrm{Disj})=\Omega(n)$

- Information complexity framework [Bar-Yossef et al.'04]

■ New challenge: Transcript useless $1-\alpha$ of the time Solution: Study transcripts conditioned on acceptance

- Cannot prove $\Omega(1)$ info lower bound for 2-bit NAND function!

Proof ideas (for experts)

Theorem: $\quad \operatorname{USBP}(\mathrm{Disj})=\Omega(n)$

■ Information complexity framework [Bar-Yossef et al.'04]

- New challenge: Transcript useless $1-\alpha$ of the time Solution: Study transcripts conditioned on acceptance
- Cannot prove $\Omega(1)$ info lower bound for 2-bit NAND function! Solution: Use a different gadget

	12	
0	1	1
1	0	1
2	1	0

Summary

Future work:

- WIP: Separating MA and SBP ?

■ No ideas: Separating SBP and USBP ?
■ Long standing: Lower bounds for $\mathbf{A M}$?

Summary

Future work:

- WIP: Separating MA and SBP ?

■ No ideas: Separating SBP and USBP ?
■ Long standing: Lower bounds for $\mathbf{A M}$?

Cheers!

