

Communication Complexity of Set-disjointness for All Probabilities

Mika Göös & Thomas Watson

University of Toronto

Göös & Watson (University of Toronto)

Communication complexity?

[Yao, STOC'79]

Göös & Watson (University of Toronto)

Communication complexity?

[Yao, STOC'79]

Set-disjointness: $x \cap y = \emptyset$?

Göös & Watson (University of Toronto)

Communication complexity?

[Yao, STOC'79]

Set-disjointness: $x \cap y = \emptyset$?

[Kalyanasundaram–Schnitger'92], [Razborov'92], [Bar-Yossef et al.'04] ...

Göös & Watson (University of Toronto)

Bounded-error model:

- *yes*-inputs accepted with prob. ≥ 99%
- *no*-inputs accepted with prob. ≤ 1%

Our focus:

Arbitrary probabilities $\alpha(n) > \beta(n)$:

- *yes*-inputs accepted with prob. $\geq \alpha$
- **no**-inputs accepted with prob. $\leq \beta$

Our focus: Arbitrary probabilities $\alpha(n) > \beta(n)$:

- *yes*-inputs accepted with prob. $\geq \alpha$
- **no**-inputs accepted with prob. $\leq \beta$
- Public vs. private coins

Tight bound: $\Theta(n \cdot (1 - \beta/\alpha))$

Simplifies: [Braun et al., FOCS'12]: EFs for max-clique [Braverman–Moitra, STOC'13]: $\alpha = 1/2 + \epsilon$, $\beta = 1/2 - \epsilon$

Our focus: Arbitrary probabilities $\alpha(n) > \beta(n)$:

- *yes*-inputs accepted with prob. $\geq \alpha$
- **no**-inputs accepted with prob. $\leq \beta$
- Public vs. private coins

Tight bound: $\Theta(n \cdot (1 - \beta/\alpha))$

Simplifies: [Braun et al., FOCS'12]: EFs for max-clique [Braverman–Moitra, STOC'13]: $\alpha = 1/2 + \epsilon$, $\beta = 1/2 - \epsilon$

Key insight: Suffices to understand case $\beta = \alpha/2$

Göös & Watson (University of Toronto)

- *yes*-inputs accepted with prob. $\geq \alpha$
- **no**-inputs accepted with prob. $\leq \alpha/2$

- *yes*-inputs accepted with prob. $\geq \alpha$
- **no**-inputs accepted with prob. $\leq \alpha/2$

New: **SBP**
$$(f) = \min_{\alpha(n)>0} \mathsf{R}^{\mathsf{pub}}_{\alpha,\alpha/2}(f) + \log(1/\alpha)$$

- *yes*-inputs accepted with prob. $\geq \alpha$
- **no**-inputs accepted with prob. $\leq \alpha/2$

New: **SBP**
$$(f) = \min_{\alpha(n)>0} \mathsf{R}^{\mathsf{pub}}_{\alpha,\alpha/2}(f) + \log(1/\alpha)$$

Compare: **PP**(f) =
$$\min_{\epsilon(n)>0} \mathsf{R}^{\mathsf{pub}}_{1/2+\epsilon,1/2-\epsilon}(f) + \log(1/\epsilon)$$

- *yes*-inputs accepted with prob. $\geq \alpha$
- **no**-inputs accepted with prob. $\leq \alpha/2$

New: **SBP**(f) =
$$\min_{\alpha(n)>0} \mathsf{R}^{\mathsf{pub}}_{\alpha,\alpha/2}(f) + \log(1/\alpha)$$

USBP(f) = $\min_{\alpha(n)>0} \mathsf{R}^{\mathsf{priv}}_{\alpha,\alpha/2}(f)$

Compare:
$$\mathbf{PP}(f) = \min_{\epsilon(n)>0} \mathsf{R}^{\mathsf{pub}}_{1/2+\epsilon,1/2-\epsilon}(f) + \log(1/\epsilon)$$

 $\mathbf{UPP}(f) = \min_{\epsilon(n)>0} \mathsf{R}^{\mathsf{priv}}_{1/2+\epsilon,1/2-\epsilon}(f)$

SBP in context

Göös & Watson (University of Toronto)

SBP in context

Göös & Watson (University of Toronto)

Theorem: **SBP** $(f) = \Theta(\text{Corr}(f))$

Theorem: **SBP** $(f) = \Theta(\operatorname{Corr}(f))$

Corruption bound:

- Let μ_{yes} and μ_{no} be supported on $f^{-1}(1)$ and $f^{-1}(0)$
- Rectangle *R* is 1-biased iff $\mu_{yes}(R) \ge 2 \cdot \mu_{no}(R)$
- Corr $(f, \mu_{\text{yes}}, \mu_{\text{no}}) = \max \Delta$ such that all 1-biased R have size $\mu_{\text{yes}}(R) \le 2^{-\Delta}$

Theorem: **SBP** $(f) = \Theta(\operatorname{Corr}(f))$

Corruption bound:

- Let μ_{yes} and μ_{no} be supported on $f^{-1}(1)$ and $f^{-1}(0)$
- Rectangle *R* is 1-biased iff $\mu_{yes}(R) \ge 2 \cdot \mu_{no}(R)$
- Corr $(f, \mu_{\text{yes}}, \mu_{\text{no}}) = \max \Delta$ such that all 1-biased *R* have size $\mu_{\text{yes}}(R) \le 2^{-\Delta}$

$$Corr(f) = \max_{\mu_{yes},\mu_{no}} Corr(f,\mu_{yes},\mu_{no})$$

Theorem: **SBP** $(f) = \Theta(\text{Corr}(f))$

Corollary: **SBP**(Disj) = $\Omega(n)$

[Razborov'92]

Göös & Watson (University of Toronto)

Complexity of Set-disjointness

5th September 2014 6 / 10

Theorem: **SBP** $(f) = \Theta(\text{Corr}(f))$

Corollary: **SBP**(Disj) = $\Omega(n)$

[Razborov'92]

Theorem: **USBP**(Disj) = $\Omega(n)$

Göös & Watson (University of Toronto)

Simple proof of main theorem

Proof of $\Omega(n \cdot (1 - \beta/\alpha))$

1 Start with (α, β) -protocol Π

2 And-amplify into (α^k, β^k) -protocol Π^k

3 Then Π^k is an **SBP** protocol for $k = (1 - \beta/\alpha)^{-1}$

4 Hence $|\Pi^k| \ge \Omega(n)$

5 Hence $|\Pi| \ge \Omega(n/k) = \Omega(n \cdot (1 - \beta/\alpha))$

Simple proof of main theorem

Proof of $\Omega(n \cdot (1 - \beta/\alpha))$

1 Start with (α, β) -protocol Π

2 And-amplify into (α^k, β^k) -protocol Π^k

3 Then Π^k is an **SBP** protocol for $k = (1 - \beta/\alpha)^{-1}$

4 Hence $|\Pi^k| \ge \Omega(n)$

5 Hence
$$|\Pi| \ge \Omega(n/k) = \Omega(n \cdot (1 - \beta/\alpha))$$

Note: And-amplification for nonnegative rank

1 Start with nonnegative matrix *M*

2 Raise entries to power *k*

3 Basic fact: $\operatorname{rank}_+(M^{(k)}) \leq \operatorname{rank}_+(M)^k$

Theorem: **SBP** $(f) = \Theta(\text{Corr}(f))$

- Analogous to [Klauck'07]
- Uses minimax

Theorem: **USBP**(Disj) = $\Omega(n)$

- Information complexity framework [Bar-Yossef et al.'04]
- New challenge: Transcript useless 1 α of the time
 Solution: Study transcripts conditioned on acceptance
- Cannot prove Ω(1) info lower bound for 2-bit NAND function!

Theorem: **USBP**(Disj) = $\Omega(n)$

- Information complexity framework [Bar-Yossef et al.'04]
- New challenge: Transcript useless 1 α of the time
 Solution: Study transcripts conditioned on acceptance
- Cannot prove Ω(1) info lower bound for 2-bit NAND function!

Göös & Watson (University of Toronto)

Theorem: **USBP**(Disj) = $\Omega(n)$

- Information complexity framework [Bar-Yossef et al.'04]
- New challenge: Transcript useless 1 α of the time
 Solution: Study transcripts conditioned on acceptance
- Cannot prove Ω(1) info lower bound for 2-bit NAND function!
 Solution: Use a different gadget

Göös & Watson (University of Toronto)

Future work:

- WIP: Separating **MA** and **SBP** ?
- No ideas: Separating SBP and USBP ?
- Long standing: Lower bounds for **AM** ?

Future work:

- WIP: Separating **MA** and **SBP** ?
- No ideas: Separating SBP and USBP ?
- Long standing: Lower bounds for AM ?

Cheers!

Göös & Watson (University of Toronto)