

Monotone Circuit Lower Bounds from Resolution

Ankit Garg MSR
Mika Göös Harvard
Pritish Kamath MIT
Dmitry Sokolov KTH

Background:
 Query-to-communication lifting
 (topic of my PhD thesis)

Query vs. Communication

Decision trees

$$
F(x, y)
$$

Communication protocols

Composed functions $f \circ g^{n}$

Examples: - Set-disjointness: OR $\circ \mathrm{AND}^{n}$

- Inner-product: XOR $\circ \mathrm{AND}^{n}$
- Equality: AND $\circ \neg \mathrm{XOR}^{n}$

Composed functions $f \circ g^{n}$

In general: $g:\{0,1\}^{m} \times\{0,1\}^{m} \rightarrow\{0,1\}$ is a small gadget

- Alice holds $x \in\left(\{0,1\}^{m}\right)^{n}$
- Bob holds $y \in\left(\{0,1\}^{m}\right)^{n}$

Composed functions $f \circ g^{n}$

Lifting Theorem Template:

$$
\mathrm{M}^{\mathrm{cc}}\left(f \circ g^{n}\right) \approx \mathrm{M}^{\mathrm{dt}}(f)
$$

Composed functions $f \circ g^{n}$

M	Query	Communication	
P	deterministic	deterministic	[RM99, GPW15, dRNV16, HHL16]
BPP	randomised	randomised	[GPW17, AG] ${ }^{+}$17]
NP	nondeterministic	nondeterministic	[GLM ${ }^{+}$15, G15]
many	poly degree	rank	[SZ09, She11, RS10, RPRC16]
many	conical junta deg.	nonnegative rank	[GLM ${ }^{+}$15, KMR17]
PNP $^{\text {decision list }}$	rectangle overlay	[GKPW17]	
	Sherali-Adams	LP complexity	[CLRS16, KMR17]
	sum-of-squares	SDP complexity	[LRS15]

Lifting Theorem Template:

$$
\mathrm{M}^{\mathrm{cc}}\left(f \circ g^{n}\right) \approx \mathrm{M}^{\mathrm{dt}}(f)
$$

Example: Classical vs. Quantum

 [ABK16,ABB+ 16 ,GPW17]$$
\begin{gathered}
\operatorname{BPP}^{\mathrm{dt}}(f) \geq \operatorname{BQP}^{\mathrm{dt}}(f)^{2.5} \\
\Downarrow \\
\operatorname{BPP}^{c c}\left(f \circ g^{n}\right) \geq \operatorname{BQP}^{c c}\left(f \circ g^{n}\right)^{2.5}
\end{gathered}
$$

More lifting applications

1 Monotone circuit complexity
2 Lower bounds in proof complexity
3 Multiparty set-disjointness
4 Communication vs. partition numbers
5 Clique vs. independent set
6 Alon-Saks-Seymour in graph theory
7 LP and SDP extension complexity
8 Learning theory (sign rank)
9 Approximate Nash equilibria

More lifting applications

1 Monotone circuit complexity
2 Lower bounds in proof complexity
3 Multiparty set-disjointness
4 Communication vs. partition numbers
5 Clique vs. independent set
6 Alon-Saks-Seymour in graph theory
7 LP and SDP extension complexity
8 Learning theory (sign rank)
9 Approximate Nash equilibria

This work:
 Monotone Circuit Lower Bounds from Resolution

Monotone circuit

Resolution refutation

Monotone circuit

Resolution refutation

Monotone circuit

Resolution refutation

Monotone circuit
Dag-like protocol

Resolution refutation
Dag-like query model

Search problems

Monotone circuits

 mKW search problem for monotone $f:\{0,1\}^{n} \rightarrow\{0,1\}$■ input: $\quad(x, y) \in f^{-1}(1) \times f^{-1}(0)$
■ output: coordinate $i \in[n]$ with $x_{i}=1, y_{i}=0$

Proof systems

CNF search problem for unsatisfiable $F=\bigwedge_{i} D_{i}$

- input: truth assignment $z \in\{0,1\}^{n}$
- output: clause D_{i} such that $D_{i}(z)=0$

Dag models

Resolution refutation

Each dag node v is labeled with a disjunction $D_{v}:\{0,1\}^{n} \rightarrow\{0,1\}$

■ root $r: D_{r} \equiv 0 \quad($ constant 0$)$
■ node v with children u, u^{\prime} :

$$
D_{v}^{-1}(1) \supseteq D_{u}^{-1}(1) \cap D_{u^{\prime}}^{-1}(1)
$$

■ leaf v: D_{v} is an axiom

Dag models

Top-down definition

Each dag node v is labeled with a conjunction $C_{v}:\{0,1\}^{n} \rightarrow\{0,1\}$

- rootr: $C_{r} \equiv 1 \quad($ constant 1$)$
- node v with children u, u^{\prime} :

$$
C_{v}^{-1}(1) \subseteq C_{u}^{-1}(1) \cup C_{u^{\prime}}^{-1}(1)
$$

- leaf v: Labeled with solution to CNF search problem valid for all $C_{v}^{-1}(1)$

Dag models

Top-down definition

Each dag node v is labeled with a conjunction $C_{v}:\{0,1\}^{n} \rightarrow\{0,1\}$

- rootr: $C_{r} \equiv 1 \quad($ constant 1$)$
- node v with children u, u^{\prime} :

$$
\underbrace{C_{v}^{-1}(1)}_{\text {feasible set }} \subseteq C_{u}^{-1}(1) \cup C_{u^{\prime}}^{-1}(1)
$$

■ leaf v: Labeled with solution to CNF search problem valid for all $C_{v}^{-1}(1)$

Dag models

Monotone circuits

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be monotone
Each dag node v is labeled with a rectangle $R_{v} \subseteq f^{-1}(1) \times f^{-1}(0)$

- rootr: $R_{r}=f^{-1}(1) \times f^{-1}(0)$
- node v with children u, u^{\prime} :

$$
R_{v} \subseteq R_{u} \cup R_{u^{\prime}}
$$

- leaf v: labeled with solution to mKW search problem valid for all R_{v}

Dag models

Abstract \mathcal{F}-dags

Let $S \subseteq \mathcal{I} \times \mathcal{O}$ be a search problem
Each dag node v is labeled with an $f_{v}: \mathcal{I} \rightarrow\{0,1\}$ from family \mathcal{F}

- root $r: f_{r} \equiv 1 \quad$ (constant 1)
- node v with children u, u^{\prime} :

$$
f_{v}^{-1}(1) \subseteq f_{u}^{-1}(1) \cup f_{u^{\prime}}^{-1}(1)
$$

- leaf v: labeled with solution to S valid for all $f_{v}^{-1}(1)$

Dag models

Summary

Model	Family \mathcal{F}	Problem S
Abstract \mathcal{F}-dags	\mathcal{F}	any S
Resolution	conjunctions	CNF search
Monotone circuit	rectangles	mKW search

Our result

Setup

■ $S \subseteq\{0,1\}^{n} \times \mathcal{O}$ any query search problem

- $w(S)$ is the least width of conjunction-dag that solves S (aka Resolution width)
■ $g:[m] \times\{0,1\}^{m} \rightarrow\{0,1\}$ where $m=n^{O(1)}$ is two-party index function: $g(x, y)=y_{x}$
- $S \circ g^{n}$ is composed search problem

Our result

Setup

■ $S \subseteq\{0,1\}^{n} \times \mathcal{O}$ any query search problem

- $w(S)$ is the least width of conjunction-dag that solves S (aka Resolution width)
■ $g:[m] \times\{0,1\}^{m} \rightarrow\{0,1\}$ where $m=n^{O(1)}$ is two-party index function: $g(x, y)=y_{x}$
- $S \circ g^{n}$ is composed search problem

Result
Rectangle-dag complexity of $S \circ g^{n}$ is

$$
n^{\Theta(w(S))}
$$

Our result

Bonus

■ Triangle-dags \equiv Monotone real circuits [HC99, Pud97, HP17]

- LTF-dags \equiv Cutting Planes refutations

Rectangle

Triangle

Our result

Bonus

- Triangle-dags \equiv Monotone real circuits [HC99, Pud97, HP17]

- LTF-dags \equiv Cutting Planes refutations

Result Triangle-dag complexity of $S \circ g^{n}$ is

$$
n^{\Theta(w(S))}
$$

Our result

Upshot

1 Start with n-variable k-CNF F of Resolution width w
2 Apply result: $S_{F} \circ g^{n}$ has triangle-dag complexity $n^{\Theta(w)}$
3 Interpret $S_{F} \circ g^{n}$ as mKW/CNF search problem:
mKW : monotone function $f:\{0,1\}^{n^{\circ(k)}} \rightarrow\{0,1\}$ with monotone circuit complexity $n^{\Theta(w)}$
CNF: $n^{O(1)}$-variable $(k+O(1))$-CNF formula with Cutting Planes complexity $n^{\Theta(w)}$
Previously: Clique [Pud97], random CNF [HP17, FPPR17]

Our result

Upshot

Jukna's 2012 textbook (Research Problem 19.17)
"It would be nice to have a lower bounds argument for cutting plane proofs explicitly showing what properties of contradictions do force long derivations."
mKW: monotone function $f:\{0,1\}^{n^{O(k)}} \rightarrow\{0,1\}$ with monotone circuit complexity $n^{\Theta(w)}$
CNF: $n^{O(1)}$-variable $(k+O(1))$-CNF formula with Cutting Planes complexity $n^{\Theta(w)}$
Previously: Clique [Pud97], random CNF [HP17, FPPR17]

Tools from Prior Work

 [GLMWZ15, GPW17]
Rectangles \leftrightarrow conjunctions

Large rectangle $R \subseteq[m]^{n} \times\{0,1\}^{m n}$ in the domain of $S \circ g^{n}$ can be partitioned into subrectangles

$$
R=\bigcup_{i} R^{i}
$$

such that $g^{n}\left(R^{i}\right)=$ large subcube in the domain of S
R of density $2^{-d} \Longrightarrow$ codimension- d subcubes

Rectangles \leftrightarrow conjunctions

Large rectangle $R \subseteq[m]^{n} \times\{0,1\}^{m n}$ in the domain of $S \circ g^{n}$ can be partitioned into subrectangles

$$
R=\bigcup_{i} R^{i}
$$

such that $g^{n}\left(R^{i}\right)=$ large subcube in the domain of S
R of density $2^{-d} \Longrightarrow$ codimension- d subcubes

Game-Theoretic Characterisation of Resolution Width
 [Pud00, AD08]

Explorer vs Adversary

Let $S \subseteq\{0,1\}^{n} \times \mathcal{O}$ be a search problem

- Game state is $\rho \in\{0,1, *\}^{n}$, initially $\rho=*^{n}$
- In each round Explorer makes a move

Query: Explorer chooses $i \in[n]$
Adversary responds $b \in\{0,1\}$
Update $\rho_{i} \leftarrow b$
Forget: Explorer chooses $i \in[n]$
Update $\rho_{i} \leftarrow *$
■ Game ends when solution to S can be deduced for ρ

Explorer vs Adversary

Let $S \subseteq\{0,1\}^{n} \times \mathcal{O}$ be a search problem

- Game state is $\rho \in\{0,1, *\}^{n}$, initially $\rho=*^{n}$
- In each round Explorer makes a move

Query: Explorer chooses $i \in[n]$
Adversary responds $b \in\{0,1\}$
Update $\rho_{i} \leftarrow b$
Forget: Explorer chooses $i \in[n]$
Update $\rho_{i} \leftarrow *$

- Game ends when solution to S can be deduced for ρ
$w(S)=$ least w such that Explorer has a strategy that maintains ρ of width $\leq w$

Proof outline:

Given size-2 ${ }^{d}$ rectangle-dag for $S \circ g^{n}$ extract width- d Explorer-strategy for S

Proof outline

1 For each node v of rectangle-dag, partition $R_{v}=\bigcup_{i} R_{v}^{i}$ where each subrectangle is $\underbrace{\rho \text {-like }}$ for $|\rho| \leq d$

$$
g^{n}\left(R_{v}^{i}\right)=\text { strings consistent with } \rho
$$

Proof outline

1 For each node v of rectangle-dag, partition $R_{v}=\bigcup_{i} R_{v}^{i}$ where each subrectangle is $\underbrace{\rho \text {-like }}$ for $|\rho| \leq d$

$$
g^{n}\left(R_{v}^{i}\right)=\text { strings consistent with } \rho
$$

2 Extract width- d Explorer-strategy by walking down the rectangle-dag, starting at root

Invariant

At node v : Game state ρ, maintain ρ-like $R^{\prime} \subseteq R_{v}$

1. Root

$R_{\text {root }}=$ domain of g^{n}
which is $*^{n}$-like

Invariant

At node $v: \quad$ Game state ρ, maintain ρ-like $R^{\prime} \subseteq R_{v}$

2. Internal node

Invariant

At node $v: \quad$ Game state ρ, maintain ρ-like $R^{\prime} \subseteq R_{v}$

$\rho=01110 * * * * * * * *$

R^{\prime}

Invariant

At node $v: \quad$ Game state ρ, maintain ρ-like $R^{\prime} \subseteq R_{v}$

$\rho=01110 * * * * * * * *$

Invariant

At node $v:$ Game state ρ, maintain ρ-like $R^{\prime} \subseteq R_{v}$

$\rho=01110 * * * * * * * *$

Invariant

At node $v:$ Game state ρ, maintain ρ-like $R^{\prime} \subseteq R_{v}$

$\rho=01110 * * * * * * * *$

Invariant

At node $v: \quad$ Game state ρ, maintain ρ-like $R^{\prime} \subseteq R_{v}$

$\rho=0110 * * * ? * * * *$

Invariant

At node v : Game state ρ, maintain ρ-like $R^{\prime} \subseteq R_{v}$
$\rho=01110 * * * 1 * * ? *$

Invariant

At node $v:$ Game state ρ, maintain ρ-like $R^{\prime} \subseteq R_{v}$

$\rho=01110 * * * 1$? 0 0

Invariant

At node $v: \quad$ Game state ρ, maintain ρ-like $R^{\prime} \subseteq R_{v}$

$\rho=01110 * * * 10$? $0 *$

Invariant

At node $v: \quad$ Game state ρ, maintain ρ-like $R^{\prime} \subseteq R_{v}$

$\rho=0110 * * * 1010 *$

Invariant

At node $v: \quad$ Game state ρ, maintain ρ-like $R^{\prime} \subseteq R_{v}$

$\rho=* * * * * * * \mathbb{1} 010 *$

Invariant

At node $v:$ Game state ρ, maintain ρ-like $R^{\prime} \subseteq R_{v}$

3. Leaf

Leaf labeled with $o \in \mathcal{O}$ also valid for ρ

Game ends!

Invariant

At node v : Game state ρ, maintain ρ-like $R^{\prime} \subseteq R_{v}$

3.2 Simplified proof

To explain the basic idea, we first give a simplified version of the proof: We assume that all rectangles R involved in Π-call them the origiaal rectangles -can be partitioned errorlessly into ρ-structured subrectangles for ρ of width $O(d)$. That is, invoking the 2 -round partitioning scheme for each original R, we assume that
(*) Assumption: All subrectangles R^{i} in the resulting partition $R=\bigcup_{i} R^{d}$ satisfy the "structured" case of Lemma 5 for $k=2 d \log n$.
In Section 33 we remove this assumption by explaining how the procf can be modified to work in the presence of some error rows/columns.

Overview. We extract a width- $O(d)$ Explorer-strategy for S by walking down the rectangle-dag Π, starting at the roct. For each original rectangle R that is reached in the walk, we maintain a ρ-structured subrectangle $R^{\prime} \subseteq R$ chosen from the 2-round partition of R. Note that ρ will have width $O(d)$ by our choice of k. The intention is that ρ will record the current state of the game. There are three issues to address: (1) Why is the starting condition of the game met? (2) How do we take a step from a node of II to one of its children? (3) Why are we done once we reach a leaf?
(1) Root case. At start, the root of Π is associated with the ceiginal rectangle $R=[m]^{n} \times\{0,1\}^{m n}$ comprising the whole domain. The 2 -round partition of R is trivial: it contains a single part, the $*^{n}$-structured R itself. Hence we simply maintain the ε^{n}-structured $R \subseteq R$, which meets the starting condition for the game.
(2) Internal step. This is the crux of the argument: Supposing the game has reached state $\rho_{R^{*}}$
 we want to move to some $\rho_{L^{\prime-}}$-structured subrectangle $L^{\prime} \subseteq L$ associated with a child of v. Moreover, we must keep the width of the game state at most $O(d)$ during this nove.
Let the two original rectangles associated with the children of v be L and L^{*}. Because $R^{\prime} \subseteq L \cup L^{*}$ at least one of L and L^{*}, say L, covers at least kalf of R. That is, the rectangle $X^{\prime} \times Y^{\prime}=R^{\prime} \cap L$ has density $\geq 1 / 2$ inside R^{\prime}. Since R^{\prime} satisfies the "structured" case in Lemma 5 we know that $X^{\prime} \times Y^{\prime}=R^{\prime} \cap L$ is still $\rho_{R^{\prime}}$-structured. Hy Lemma 4 there exists some $x^{*} \in X^{\prime}$ such that $\left\{x^{*}\right\} \times Y^{\prime}$ is ρ_{R}-like. Let the partition of L according to the 2 -round scheme be $L=\bigcup_{i, z} X^{i} \times Y^{i, z}$. Let i^{*} be the unique index auch that $x^{*} \in X^{i^{*}}$. Recall that $X^{i^{*}}$ is associated with some subset of blocks $I^{*} \subseteq[n]$ such that all parts of the form $X^{i^{*}} \times Y^{i^{*}, z}$ are ρ-structured with fix $\rho=I^{*}$. In particular, we have $\left|I^{*}\right| \leq O(d)$.

As Explorer, we now query the input bits in coordinates $J:=I^{*} \backslash$ fix $\rho_{R^{\prime}}$ (in any order) obtaining some resporse string $z, \in\{0,1\}^{J}$ from the Adversary. As a result, the state of the game becomes the extension of ρ_{R} by z_{J}, call it ρ^{*}, which has width \mid fix $\rho^{*}\left|=\left|f i x \rho_{R^{\prime}} \cup J\right| \leq O(d)\right.$.

Note that there is some $y^{*} \in Y^{\prime}$ (and hence some $\left(x^{*}, y^{*}\right) \in R^{\prime} \cap L$) such that $G\left(x^{*}, y^{*}\right)$ is consistent with ρ^{*}, indeed, the whole row $\left\{x^{*}\right\} \times Y^{\prime}$ is $\rho_{R^{\prime}}$-like and ρ^{*} extends $\rho_{K^{*}}$. In the partition of L, let $L^{\prime}:=X^{1^{*}} \times Y^{i^{*}, z^{+}}$be the unique part such that $\left(x^{*}, y^{*}\right) \in L^{\prime}$. Note that L^{\prime} is $\rho_{L^{-}}$like for aome $\rho_{L^{*}}$ that is consistent with $C\left(x^{*}, y^{*}\right)$ and fix $\rho_{L}-I^{*}$. Hence ρ^{*} extends $\rho_{L^{*}}$. As Exploner, we now forget all queried bits in ρ^{*} except those queried in $\rho_{L^{\prime}}$.

We have recovered our invariant: the game state is $\rho_{L^{\prime}}$ and we maintain a $\rho_{L^{\prime}}$-structured subrectangle L^{\prime} of an original rectangle L. Moreover, the width of the game state remained $O(d)$.
(3) Leaf case. Suppose the game state is ρ and we are maintaining an associated ρ-structured subrectangle $R^{\prime} \subseteq R$ corresponding to a leaf node. The leaf node is labeled with some solution $o \in \mathcal{O}$ satisfying $R^{\prime} \subseteq(S \circ G)^{-1}(o)$, that is, $G(R) \subseteq S^{-1}(o)$. But $G\left(R^{\prime}\right)=C_{r}^{-1}(1)$ by Lemma 3 so that $C_{\rho}^{-1}(1) \subseteq S^{-1}(o)$. Therefore the game ends. This concludes the (simplified) proof.

3.3 Accounting for error

Next, we explain how to get rid of the assumption (*) by accounting for the rows and columns that are classified as error in Lemma 5 for $k:=2 d \operatorname{logn}$. The partittoning of Π 's rectangles is done more carefully: We sort all original rectangles in reverse topological order $R_{1}, R_{2}, \ldots, R_{n}$ d from leaves to root, that is, if R_{i} is a descendant of R_{j} then R_{i} comes before R_{j} in the order. Then we process the rectangles in this order:
Initialize cumulative error sets $X_{c r}^{*}=Y_{\text {con }}^{*}:=\emptyset$. Iterate for $i=1,2, \ldots, n^{d}$ rounds:

1. Remove from R_{i} the rows/oolumns $X_{e r r}^{*}, Y_{\text {err }}^{*}$. That is, update

$$
R_{i} \leftarrow R_{i} \backslash\left(X_{\text {err }}^{*} \times\{0,1\}^{m n} \cup[m]^{n} \times Y_{\text {err }}^{*}\right) .
$$

2. Run the 2 -round partitioning scheme for R_{i}. Output all resulting subrectangles that satisfy the "structured" case of Lemma 5 for $k:=2 d \log n$. (All non-structured subrectangles are omitted). Call the resulting error rows/cohums $X_{\text {err }}$ and $Y_{\text {err }}$.
3. Update $X_{\text {err }}^{*} \leftarrow X_{\text {err }}^{*} \cup X_{\text {err }}$ and $Y_{\text {err }}^{*} \leftarrow Y_{\text {err }}^{*} \cup Y_{\text {err- }}$.

In words, an original rectangle R_{i} is processed only after all of its descendants are partitioned. Each descendant may contribute some error rows/columns, accumulated into sets $X_{\text {err }}^{*}, Y_{\text {err }}^{*}$, which are deleted from R_{i} before it is partitioned. The partitioning of R_{i} will in turn contribute its error rows/columns to its ancestors.

We may now repeat the proof of Section 3.2 using only the structured swbrectangles output by the above process. We highlight tro key properties that allow the proof to go through verbatim.

- First, the cumulative error at the end of the process is tiny; $X_{e r r}^{*}, Y_{\text {ert }}^{*}$ have density at most $n^{d} \cdot n^{-2 d} \leq 1 / 4$ by a union bound over all rounds. In particular, the root rectangle R_{n} (with errors removed) still has density $\geq 1 / 2$ inside $[m]^{n} \times\{0,1\}^{m n}$ and so it is $*^{n}$-structured. This allows us to meet the starting condition for the game.
- Second, by construction, the cumulative error sets grow as we walk from leaves towards the root. This means that our error handling does not interfere with the internal step: each atructured aubrectangle R^{\prime} of an original rectangle R is covered by the atructured subrectangles of R 's children.

Open problems

Open problems

Q1. Lifting for dags over intersections-of-k-triangles (Resolution over Cutting Planes)

Rectangle

Triangle

Block-diagonal

Intersection of
2 triangles

Open problems

Q1. Lifting for dags over intersections-of-k-triangles (Resolution over Cutting Planes)

Q2. Lifting for nondeterministic NOF protocols (Towards dag-like LBs for semi-algebraic proof systems)

Q3. Superlinear depth for small monotone circuits? (Razborov'16: "A New Kind of Tradeoff")

Open problems

Q1. Lifting for dags over intersections-of-k-triangles (Resolution over Cutting Planes)

Q2. Lifting for nondeterministic NOF protocols (Towards dag-like LBs for semi-algebraic proof systems)

Q3. Superlinear depth for small monotone circuits? (Razborov'16: "A New Kind of Tradeoff")

Cheers!

