

Monotone Circuit Lower Bounds from Resolution

Ankit Garg Ma <u>Mika Göös</u> Ha Pritish Kamath Ma Dmitry Sokolov KT

MSR Harvard MIT KTH

Background: Query-to-communication lifting (topic of my PhD thesis)

Query vs. Communication

Decision trees

Communication protocols

Examples:

- Set-disjointness: $OR \circ AND^n$
 - Inner-product: XOR ANDⁿ
 - Equality: $AND \circ \neg XOR^n$

In general: $g: \{0,1\}^m \times \{0,1\}^m \to \{0,1\}$ is a small gadget

Alice holds x ∈ ({0,1}^m)ⁿ
 Bob holds y ∈ ({0,1}^m)ⁿ

Lifting Theorem Template:

$$\mathsf{M}^{\mathsf{cc}}(f \circ g^n) \approx \mathsf{M}^{\mathsf{dt}}(f)$$

М	Query	Communication	
P	deterministic	deterministic	[RM99, GPW15, dRNV16, HHL16]
BPP	randomised	randomised	[GPW17, AGJ ⁺ 17]
NP	nondeterministic	nondeterministic	[GLM ⁺ 15, G15]
many	poly degree	rank	[SZ09, She11, RS10, RPRC16]
many	conical junta deg.	nonnegative rank	[GLM ⁺ 15, KMR17]
P ^{NP}	decision list	rectangle overlay	[GKPW17]
	Sherali–Adams	LP complexity	[CLRS16, KMR17]
	sum-of-squares	SDP complexity	[LRS15]

Lifting Theorem Template:

$$\mathsf{M}^{\mathsf{cc}}(f \circ g^n) \approx \mathsf{M}^{\mathsf{dt}}(f)$$

Example: Classical vs. Quantum [ABK16,ABB⁺16,GPW17]

$$\begin{aligned} \mathsf{BPP^{dt}}(f) &\geq \mathsf{BQP^{dt}}(f)^{2.5} \\ & \downarrow \\ \mathsf{BPP^{cc}}(f \circ g^n) &\geq \mathsf{BQP^{cc}}(f \circ g^n)^{2.5} \end{aligned}$$

More lifting applications

- 1 Monotone circuit complexity
- 2 Lower bounds in proof complexity
- 3 Multiparty set-disjointness
- 4 Communication vs. partition numbers
- 5 Clique vs. independent set
- 6 Alon–Saks–Seymour in graph theory
- 7 LP and SDP extension complexity
- 8 Learning theory (sign rank)
- 9 Approximate Nash equilibria

More lifting applications

- **1** Monotone circuit complexity
- **2** Lower bounds in proof complexity
- 3 Multiparty set-disjointness
- 4 Communication vs. partition numbers
- 5 Clique vs. independent set
- 6 Alon–Saks–Seymour in graph theory
- 7 LP and SDP extension complexity
- 8 Learning theory (sign rank)
- 9 Approximate Nash equilibria

This work:

Monotone Circuit Lower Bounds from Resolution

Monotone circuit

Resolution refutation

Resolution refutation

Monotone circuit

Resolution refutation

Monotone circuit Dag-like protocol **Resolution refutation** Dag-like query model

Monotone circuits

mKW search problem for monotone $f: \{0,1\}^n \rightarrow \{0,1\}$ *input:* $(x,y) \in f^{-1}(1) \times f^{-1}(0)$ *output:* coordinate $i \in [n]$ with $x_i = 1, y_i = 0$

▶ Proof systems CNF search problem for unsatisfiable F = ∧_i D_i *input:* truth assignment z ∈ {0,1}ⁿ *output:* clause D_i such that D_i(z) = 0

Resolution refutation

Each dag node v is labeled with a disjunction $D_v: \{0,1\}^n \to \{0,1\}$

- root r: $D_r \equiv 0$ (constant 0)
- node v with children u, u': $D_v^{-1}(1) \supseteq D_u^{-1}(1) \cap D_{u'}^{-1}(1)$
- leaf v: D_v is an axiom

Top-down definition

Each dag node v is labeled with a conjunction $C_v: \{0, 1\}^n \to \{0, 1\}$

• root r: $C_r \equiv 1$ (constant 1)

- node v with children u, u': $C_v^{-1}(1) \subseteq C_u^{-1}(1) \cup C_{u'}^{-1}(1)$
- leaf v: Labeled with solution to CNF search problem valid for all $C_{n}^{-1}(1)$

Top-down definition

Each dag node v is labeled with a conjunction $C_v \colon \{0,1\}^n \to \{0,1\}$

• root r: $C_r \equiv 1$ (constant 1)

■ node *v* with children *u*, *u*′:

$$\underbrace{C_v^{-1}(1)}_{\text{feasible set}} \subseteq C_u^{-1}(1) \cup C_{u'}^{-1}(1)$$

• *leaf* v: Labeled with solution to **CNF search problem** valid for all $C_v^{-1}(1)$

[Raz95]

Monotone circuits

Let $f: \{0,1\}^n \to \{0,1\}$ be monotone

Each dag node v is labeled with a rectangle $R_v \subseteq f^{-1}(1) \times f^{-1}(0)$

• root r:
$$R_r = f^{-1}(1) \times f^{-1}(0)$$

- node v with children u, u':
 - $R_v \subseteq R_u \cup R_{u'}$

Mika Göös

leaf v: labeled with solution to **mKW search problem** valid for all *R_v*

[Raz95]

Abstract \mathcal{F} -dags

Let $S \subseteq \mathcal{I} \times \mathcal{O}$ be a search problem Each dag node v is labeled with an $f_v \colon \mathcal{I} \to \{0, 1\}$ from family \mathcal{F}

- root r: $f_r \equiv 1$ (constant 1)
- node v with children u, u': $f_v^{-1}(1) \subseteq f_u^{-1}(1) \cup f_{u'}^{-1}(1)$
- *leaf v:* labeled with solution to *S* valid for all $f_v^{-1}(1)$

Summary

Model	Family \mathcal{F}	Problem S
Abstract \mathcal{F} -dags	${\mathcal F}$	any S
Resolution	conjunctions	CNF search
Monotone circuit	rectangles	mKW search

Setup

- $S \subseteq \{0,1\}^n \times \mathcal{O}$ any query search problem
- *w*(*S*) is the least **width** of conjunction-dag that solves *S* (*aka Resolution width*)
- $g: [m] \times \{0,1\}^m \to \{0,1\}$ where $m = n^{O(1)}$ is two-party index function: $g(x,y) = y_x$
- $S \circ g^n$ is **composed** search problem

Setup

- $S \subseteq \{0,1\}^n \times \mathcal{O}$ any query search problem
- *w*(*S*) is the least **width** of conjunction-dag that solves *S* (*aka Resolution width*)
- $g: [m] \times \{0,1\}^m \to \{0,1\}$ where $m = n^{O(1)}$ is two-party index function: $g(x,y) = y_x$
- $S \circ g^n$ is **composed** search problem

Result

Rectangle-dag complexity of $S \circ g^n$ is $n^{\Theta(w(S))}$

Result Triangle-dag complexity of $S \circ g^n$ is $n^{\Theta(w(S))}$

Upshot

- 1 Start with *n*-variable *k*-CNF *F* of Resolution width *w*
- **2** Apply result: $S_F \circ g^n$ has triangle-dag complexity $n^{\Theta(w)}$
- 3 Interpret $S_F \circ g^n$ as mKW/CNF search problem:
 - **mKW:** monotone function $f: \{0,1\}^{n^{O(k)}} \to \{0,1\}$ with monotone circuit complexity $n^{\Theta(w)}$
 - **CNF:** $n^{O(1)}$ -variable (k + O(1))-CNF formula with Cutting Planes complexity $n^{\Theta(w)}$ *Previously:* Clique [Pud97], random CNF [HP17, FPPR17]

Upshot

Jukna's 2012 textbook (Research Problem 19.17)

"It would be nice to have a lower bounds argument for cutting plane proofs *explicitly* showing what properties of contradictions do force long derivations."

- **mKW:** monotone function $f: \{0,1\}^{n^{O(k)}} \to \{0,1\}$ with monotone circuit complexity $n^{\Theta(w)}$
 - **CNF:** $n^{O(1)}$ -variable (k + O(1))-CNF formula with Cutting Planes complexity $n^{\Theta(w)}$

Previously: Clique [Pud97], random CNF [HP17, FPPR17]

Tools from Prior Work [GLMWZ15, GPW17]

Rectangles \leftrightarrow conjunctions

Large rectangle $R \subseteq [m]^n \times \{0,1\}^{mn}$ in the domain of $S \circ g^n$ can be partitioned into subrectangles

$$R = \bigcup_i R^i$$

such that $g^n(R^i) =$ **large subcube** in the domain of *S R* of density $2^{-d} \implies$ codimension-*d* subcubes

Rectangles \leftrightarrow conjunctions

Large rectangle $R \subseteq [m]^n \times \{0,1\}^{mn}$ in the domain of $S \circ g^n$ can be partitioned into subrectangles

$$R = \bigcup_i R^i$$

such that $g^n(R^i) =$ **large subcube** in the domain of *S R* of density $2^{-d} \implies$ codimension-*d* subcubes

Game-Theoretic Characterisation of Resolution Width [Pud00, AD08]

Explorer vs Adversary

Let $S \subseteq \{0,1\}^n \times \mathcal{O}$ be a search problem

Game state is ρ ∈ {0, 1, *}ⁿ, initially ρ = *ⁿ
In each round *Explorer* makes a move
Query: *Explorer* chooses i ∈ [n] Adversary responds b ∈ {0,1} Update ρ_i ← b
Forget: *Explorer* chooses i ∈ [n] Update ρ_i ← *
Game ends when solution to S can be deduced for ρ

Explorer vs Adversary

Let $S \subseteq \{0,1\}^n \times \mathcal{O}$ be a search problem

 Game state is *ρ* ∈ {0, 1, *}ⁿ, initially *ρ* = *ⁿ
 In each round *Explorer* makes a move
 Query: *Explorer* chooses *i* ∈ [*n*] *Adversary* responds *b* ∈ {0,1} Update *ρ_i* ← *b*
 Forget: *Explorer* chooses *i* ∈ [*n*] Update *ρ_i* ← *

Game ends when solution to *S* can be deduced for *ρ*

w(S) = least w such that *Explorer* has a strategy that maintains ρ of width $\leq w$

Proof outline:

Given size-2^{*d*} rectangle-dag for $S \circ g^n$ extract width-*d* Explorer-strategy for *S*

Proof outline

1 For each node v of rectangle-dag, partition $R_v = \bigcup_i R_v^i$ where each subrectangle is ρ -like for $|\rho| \le d$ $g^n(R_v^i) = \text{ strings consistent with } \rho$

Mika Göös

Proof outline

1 For each node *v* of rectangle-dag, partition $R_v = \bigcup_i R_v^i$ where each subrectangle is ρ -like for $|\rho| \le d$ $g^n(R_v^i) = \text{strings consistent with } \rho$

2 Extract width-*d* Explorer-strategy by walking down the rectangle-dag, starting at root

Invariant

1. Root

 $R_{\rm root} = {\rm domain of } g^n$

which is $*^n$ -like

Invariant

Invariant

Invariant

Invariant

$\rho = 0 \ 1 \ 1 \ 0 \ * \ * \ * \ * \ * \ * \ * \ *$

$\rho = 0 1 1 0 * * * ? * * * *$

$\rho = 0 \ 1 \ 1 \ 0 \ * \ * \ 1 \ * \ * \ ? \ *$

$\rho = 0 1 1 0 * * * 1 ? * 0 *$

$\rho = 0 1 1 0 * * * 1 0 ? 0 *$

$\rho = 0 \ 1 \ 1 \ 0 \ * \ * \ * \ 1 \ 0 \ 1 \ 0 \ *$

$\rho = * * * * * * * 1010 *$

3. Leaf

Leaf labeled with $o \in \mathcal{O}$ also valid for ρ

Game ends!

Invariant

3.2 Simplified proof

To explain the basic idea, we first give a simplified version of the proof: We assume that all rectangles R involved in II—call them the original rectangles—can be partitioned errorlessly into ρ -structured subrectangles for ρ of width O(d). That is, invoking the 2-round partitioning scheme for each original R, we assume that

(*) Assumption: All subrectangles Rⁱ in the resulting partition R = ⋃_i Rⁱ satisfy the "structured" case of Lemma 5 for k := 2d log n.

In Section 3.3 we remove this assumption by explaining how the proof can be modified to work in the presence of some error rows/columns.

Overview. We extract a with -0.64 Deployment Tartage for S by walking down the rectangle-dag II, starting at the root for each original rectangle. R that we reached in the walk, we maintain a ρ -structured subrectangle $R^2 \subseteq R$ chosen from the 2-round partition of R. Note that ρ will have with O(4) by our choice of k. The interfacion is that ρ will record the current state of the game. There are three issues to address: (1) Why is the starting condition of the game net? (2) How do we take a step from an ode of II to our of the children's O(W) are we done once we reach hal?

(1) Root case. At start, the root of Π is associated with the original rectangle $R = [m]^n \times \{0, 1\}^{ous}$ comprising the whole domain. The 2-round partition of R is trivial: it contains a single part, the **-structured R itself. Hence we simply maintain the **-structured $R \subseteq R$, which meets the starting condition for the game.

(2) Internal step. This is the crux of the argument: Supposing the game has reached state ρ_{R'} and ware maintaining some ρ_{R'}-structured subrectangle R' ⊆ R associated with an internal node v, we want to move to some ρ_{U'}-structured subrectangle L' ⊆ L associated with a child of v. Moreover, we must keep the width of the game state at most C(d) during this move.

Let the workplatretangles seexistical with the children of the L and L?. Because $B' \in J(\Delta U)$ as beauton out L and L or $y_{ij} = Over at baseling of B, T and <math display="inline">i_{ij}$ the rectangle $X' \in Y' = B \cap L$ has density $\geq 1/2$ inside H. Since B' satisfies the structure "case in Lemma 5w know that $X' \in Y' = B \cap L$ is the rectangle $X' \in Y' = B \cap L$ is the posttructure B_i terms of the $i_{ij} = 0$ and $i_{ij} < 1 \leq i_{ij} <$

As Explorer, we now query the input bits in coordinates $J := I^* \setminus \text{fix} \rho_{R'}$ (in any order) obtaining some response string $z_j \in \{0, 1\}^J$ from the Adversary. As a result, the state of the game becomes the extension of $\rho_{R'}$ by z_j , $c_{R'}$ all is ρ' , which has width $|\text{fix} \rho'| = |\text{fix} \rho_{R'} \cup J| \leq O(d)$. Note that there is some $y^* \in Y'$ (and hence some $(z^*, y)^* \in R^* \cap L$) such that $G(z^*, y^*)$ is consistent with ρ^* ; indeed, the whole row $\{z^*\} \times Y'$ is ρ_{P^*} like and ρ^* extends ρ_{R^*} . In the partition Ω_{-} is $U^* : X^{N^*} \times Y^{N^*}$ be the unique part such that $(z^*, y^*) \in U$. Note that U is ρ_{P^*} and P_{-} like for some ρ_{Q^*} that is consistent with $G(x^*, y^*)$ and $B(\rho_{P^*} = I^*$. Hence ρ^* extends ρ_{L^*} . As Explorer, we now forget all queried bits in ρ^* core those queried in ρ_{P^*} .

We have recovered our invariant: the game state is ρ_L and we maintain a ρ_L -structured subrectangle L' of an original rectangle L. Moreover, the width of the game state remained O(d).

(3) Leaf case. Suppose the game state is ρ and we are maintaining an associated ρ-structured subrectaugle R['] ⊆ R corresponding to a leaf node. The leaf node is labeled with some solution o ∈ O satisfying R['] ⊆ (S ⊂ G)⁻¹(o), that is, G(R[']) ⊆ S⁻¹(o). But G(R[']) ⊆ S⁻¹(o). Therefore the game ends. This concludes the (simplified) proof.

3.3 Accounting for error

Next, we explain how to get rid of the assumption (+) by accounting for the rows and columns that are classified as error in Lemma 5 for $k := 2d\log n$. The partitioning of II's rectangles is done more carefully. We solve all original retrachases in reverse topological order R_1 , R_1 , ..., R_{def} from leaves to root, that is, if R_1 is a descendant of R_j then R_i comes before R_j in the order. Then we process the rectangles in order:

Initialize cumulative error sets $X_{err}^* = Y_{err}^* := \emptyset$. Iterate for $i = 1, 2, ..., n^d$ rounds:

Remove from R_i the rows/columns X^{*}_{err}, Y^{*}_{err}. That is, update

$$R_i \leftarrow R_i \smallsetminus (X_{err}^* \times \{0, 1\}^{mn} \cup [m]^n \times Y_{err}^*)$$

- Run the 2-round partitioning scheme for R_i. Output all resulting subrectangles that satisfy the "structured" case of Lemma 5 for k := 2d log n. (All non-structured subrectangles are omitted). Call the resulting error rows/columns X_{err} and Y_{arr}.
- 3. Update $X_{err}^* \leftarrow X_{err}^* \cup X_{err}$ and $Y_{err}^* \leftarrow Y_{err}^* \cup Y_{err}$.

In words, an original rectangle R_i is processed only after all of its descendants are partitioned. Each descendant may contribute some error rows/columns, accumulated into sets X_{err}^{*} , Y_{err}^{*} , which are deleted from R_i before it is partitioned. The partitioning of R_i will in turn contribute its error rows/columns to its ancestors.

We may now repeat the proof of Section 3.2 using only the structured subrectangles output by the above process. We highlight two key properties that allow the proof to go through verbatim.

- − First, the cumulative error at the end of the process is tiny: $X_{urr}^* Y_{ur}^*$ have density at most $n^{k_1} n^{-2k} \leq 1/4$ by a union bound over all rounds. In particular, the root rectangle R_{uc} (with errors removed) still has density $\geq 1/2$ inside $[m]^n \times \{0, 1\}^{nm}$ and so it is $*^n$ -structured. This allows us to meet the starting condition for the game.
- Second, by construction, the cumulative error sets grow as we walk from leaves towards the root. This means that our error handling does not interfere with the internal step: each structured subrectangle R' of an original rectangle R is covered by the structured subrectangles of R's children.

10

Q1. Lifting for dags over *intersections-of-k-triangles* (Resolution over Cutting Planes)

- **Q1.** Lifting for dags over *intersections-of-k-triangles* (Resolution over Cutting Planes)
- **Q2.** Lifting for *nondeterministic* NOF protocols (Towards dag-like LBs for semi-algebraic proof systems)
- **Q3.** Superlinear depth for small monotone circuits? (Razborov'16: "A New Kind of Tradeoff")

- **Q1.** Lifting for dags over *intersections-of-k-triangles* (Resolution over Cutting Planes)
- **Q2.** Lifting for *nondeterministic* NOF protocols (Towards dag-like LBs for semi-algebraic proof systems)
- **Q3.** Superlinear depth for small monotone circuits? (Razborov'16: "A New Kind of Tradeoff")

Cheers!