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Background:

Query-to-communication lifting
(topic of my PhD thesis)
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Query vs. Communication

f(2) F(x,y)

n% \h
Decision trees Communication protocols
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Composed functions f o g"

Compose with g”

0 ()
0N

X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5

Examples: e Set-disjointness: OR o AND"

Inner-product: XOR o AND"

Equality: AND o =XOR"
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Composed functions f o g"

@\ Compose with g” @
<7
Y1 X2 Y2 X3 Y3 X4 Ys X5Y5

In general: g: {0,1}" x {0,1}" — {0,1} is a small gadget

holds » € ({0,1}™)"
m Bob holds y € ({0,1}")"
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Composed functions f o g"

Compose with g”

(1)
AN

X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5

Lifting Theorem Template:

M=(f 0 &") ~ M¥(f)
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Composed functions f o g"

M Query Communication
P deterministic deterministic [RM99, GPW15, dRNV16, HHL16]
BPP  randomised randomised [GPW17, AG] "17]
NP nondeterministic  nondeterministic [GLM*15, G15]
many  poly degree rank [SZ09, Shell, RS10, RPRC16]
many  conical junta deg. nonnegative rank [GLM 15, KMR17]
PNP decision list rectangle overlay [GKPW17]
Sherali-Adams LP complexity [CLRS16, KMR17]
sum-of-squares SDP complexity [LRS15]

Lifting Theorem Template:

M=(f 0 &") ~ M¥(f)
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Example: Classical vs. Quantum
[ABK16,ABB+16,GPW17]

BPPdt (f) Z BQPdt (f)2.5

!

BPPcc(f Og”) Z BQPcc(f ogn)2.5
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More lifting applications

Monotone circuit complexity

Lower bounds in proof complexity
Multiparty set-disjointness
Communication vs. partition numbers
Clique vs. independent set

A Alon-Saks-Seymour in graph theory
LP and SDP extension complexity
Learning theory (sign rank)
Approximate Nash equilibria
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This work:

Monotone Circuit Lower Bounds
from Resolution
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(x1) (X1vXx2) (x2)

Monotone circuit Resolution refutation
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Mon. feasible / \

interpolation D Dy

[BPR97, Kra97] A /\

(x1) (X1vXx2) (x2)

Monotone circuit Resolution refutation
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S S—

Mon. feasible
interpolation
[BPR97, Kra97]

This work

(x1) (X1vXx2) (x2)

Resoluti futati
Dag-like protocol Dag-like query model
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Search problems

» Monotone circuits

mKW search problem for monotone f: {0,1}" — {0,1}

m input:  (x,y) € f1(1) x £71(0)
m output: coordinatei € [n] withx; =1y, =0

CNF search problem for unsatisfiable F = A; D;

truth assignment z € {0,1}"
clause D; such that D;(z) =0
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Dag models

Resolution refutation

Each dag node v is labeled with a
disjunction Dy: {0,1}" — {0,1}

m rootr: D, =0 (constant0)

m node v with children u, u':

D,'(1) 2 D,'(1)ND,'(1)

m leafv: D, is an axiom
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Dag models [Raz95]

Top-down definition

Each dag node v is labeled with a
conjunction C,: {0,1}" — {0,1}

m rootr: C, =1 (constant1)

m node v with children u, u':

C,'(1) € G M UC, (1)

m Jeafv: Labeled with solution
to CNF search problem
valid for all C;1(1)

O O O
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Dag models

Top-down definition

Each dag node v is labeled with a
conjunction C,: {0,1}" — {0,1}

m rootr: C, =1 (constant1)

m node v with children u, u':
c, (1) € clyuc(1)
N——

feasible set

m Jeafv: Labeled with solution
to CNF search problem
valid for all C;1(1)

O

[Raz95]

fixed
input
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Dag models [Raz95]

fixed

Monotone circuits 4
input

Let f: {0,1}" — {0,1} be monotone

Each dag node v is labeled with a
rectangle R, C f~1(1) x f~1(0)

m rootr: R, = f~1(1) x f~1(0)

m node v with children u, u':

R, € R,URy

m leaf v: labeled with solution
to mKW search problem
valid for all R, 0
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Dag models

fixed

Abstract F-dags .
input

Let S € T x O be a search problem

Each dag node v is labeled with
an fy: T — {0,1} from family F

m rootr: f, =1 (constant 1)

m node v with children u, u':
) € MU

m leaf v: labeled with solution
to S valid for all £, (1)

O
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Dag models

Summary

Model Family F Problem S
Abstract F-dags F any S
Resolution conjunctions  CNF search
Monotone circuit — rectangles mKW search
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Our result

Setup m S C{0,1}" x O any query search problem
m w(S) is the least width of conjunction-dag
that solves S (aka Resolution width)

mg: x {0,1}" — {0,1} where m = n°()
is two-party index function: g(x,y) =y

m Sog"is composed search problem

// \\ Compose with (g/ 7 \\*
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Our result

Setup m S C{0,1}" x O any query search problem

m w(S) is the least width of conjunction-dag
that solves S (aka Resolution width)

m g: [m] x {0,1}" = {0,1} where m = nO)
is two-party index function: g(x,y) = y.

m 5o g¢"is composed search problem

Re Sult Rectangle-dag complexity of S o g" is

O(w(s))
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Our result

BOHuS m Triangle-dags = Monotone real circuits

[HC99, Pud97, HP17]
m LTF-dags = Cutting Planes refutations
Rectangle Triangle
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m LTF-dags = Cutting Planes refutations

Triangle-dag complexity of S o g" is

@w(S))
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Our result

Upshot

Start with n-variable k-CNF F of Resolution width w
Apply result: Spo g" has triangle-dag complexity n®(®)
Interpret Sr o g" as mKW /CNEF search problem:

mKW: monotone function f: {0,1}”O(k) —{0,1}
with monotone circuit complexity n®@)

CNE: n°(M_variable (k + O(1))-CNF formula
with Cutting Planes complexity n®w)
Previously: Clique [Pud97], random CNF [HP17, FPPR17]
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Our result

Upshot

Jukna’s 2012 textbook (Research Problem 19.17)

“It would be nice to have a lower bounds argument for cut-
ting plane proofs explicitly showing what properties of con-
tradictions do force long derivations.”

mKW: monotone function f: {0,1}”O(k) —{0,1}
with monotone circuit complexity n®@)

CNE: n°(M_variable (k + O(1))-CNF formula
with Cutting Planes complexity n®w)
Previously: Clique [Pud97], random CNF [HP17, FPPR17]
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Tools from Prior Work

[GLMWZ15, GPW17]
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Rectangles <+ conjunctions

R |

R C [m]" x {0,1}"™" in the domain of
S 0 ¢" can be partitioned into subrectangles

R=;R

such that ¢"(RY) = in the domain of S

R of density 2-4 — codimension-d subcubes
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Rectangles <+ conjunctions

error
R
|
~S ‘
| | V/
error { 777707/

Large rectangle R C [m]" x {0,1}™" in the domain of
S 0 ¢" can be partitioned into subrectangles

R=;R

such that g"(Ri) = large subcube in the domain of S

R of density 274 = codimension-d subcubes
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Game-Theoretic Characterisation of
Resolution Width

[Pud00, AD0S]
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Explorer vs Adversary

Let S C {0,1}" x O be a search problem

m Game state is p € {0,1,*}", initially p = *"
m In each round Explorer makes a move

Query: Explorer chooses i € [n]
Adversary responds b € {0,1}
Update p; < b

Forget: Explorer chooses i € [n]
Update p; < *

m Game ends when solution to S can be deduced for p
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Explorer vs Adversary

Let S C {0,1}" x O be a search problem

m Game state is p € {0,1,*}", initially p = *"
m In each round Explorer makes a move

Query: Explorer chooses i € [n]
Adversary responds b € {0,1}
Update p; < b

Forget: Explorer chooses i € [n]
Update p; < *

m Game ends when solution to S can be deduced for p

w(S) = least wsuch that Explorer has a
strategy that maintains p of width < w
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Proof outline:

Given size-2 rectangle-dag for S o ¢"
extract width-d Explorer-strategy for S
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Proof outline

For each node v of rectangle-dag, partition R, = |J; Ré,
where each subrectangle is p-like for |p| < d
N—n =

¢"(RL) = strings consistent with p
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Proof outline

For each node v of rectangle-dag, partition R, = |J; R;
where each subrectangle is p-like for |p| < d
N—n =

¢"(RL) = strings consistent with p

Extract width-d Explorer-strategy by walking down
the rectangle-dag, starting at root

Atnode v: Game state p, maintain p-like R’ C R,
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1. Root

Rroot = domain of g"

which is *"-like RS RES

Atnode v: Game state p, maintain p-like R" C R,
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2. Internal node O

Crux!

Atnode v: Game state p, maintain p-like R" C R,
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P = 0110 %% * x % % % %

Atnode v: Game state p, maintain p-like R" C R,
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P = 0110 %% * x % % % %

R/

Atnode v: Game state p, maintain p-like R" C R,
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P = 0110 %% * x % % % %

Atnode v: Game state p, maintain p-like R" C R,
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P = 0110 %% * x % % % %

R/

Atnode v: Game state p, maintain p-like R" C R,
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P = 0110 % *7? % % % %

Atnode v: Game state p, maintain p-like R" C R,

Monotone Circuits & Resolution 25th October 2017 19 /22



P = 0110 *x*x*x1x*xx? %

Atnode v: Game state p, maintain p-like R" C R,
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0= 011T0xx*xx17?=x0 %

Atnode v: Game state p, maintain p-like R" C R,
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0 =0110x*xx%x102?0 %

Atnode v: Game state p, maintain p-like R" C R,
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P =0110x«x%*x1010 *

Atnode v: Game state p, maintain p-like R" C R,
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0= **xxx%xx*x1010 *
[r] [
[]

Atnode v: Game state p, maintain p-like R" C R,
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3. Leaf O

Leaf labeled witho € O |4 -
also valid for p
Game ends!

Atnode v: Game state p, maintain p-like R" C R,
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82 Simplified proof
To explain the basic idea, we first gve o simplifid version of the proof We assune that ol
sectangles R involved in 1L —call thew the original rectangles —can be partitioned crsorlessly into
pstructured subrectangles for @ of width G(d). That is. invoking the 2-round partitioning scheme
for each original R, we assume that

(#) Assumption: Allsubrectangles R in the sesulting pastition R — ), B satisfy the ‘structured”

case of Lemma 5 for k = 2dlogn.

In Section 3.3 we remove this assumption by explaining how the proof can be modified 1o work i
the presence of some error rows /columns,

Overview. We extract 4 width-O[d) foe by walking dows b g 11,
staeting at the zoot. For each original rectangle R that is reached in the walk, we mainiain o
grstructured subrectangle € R chosen from the: 2-round partition of R. Note that o will have
width O(d) by our choice of k. The itention is that  will record the current state of the game.
There are three issues (0 address: (1) Wiy is the starting condition of the gamo met” (2) How do
we take a step from a node of 11 10 ane of its ehildren? (3] Why are we done once we reach a leaf?

(1) Root ease. At start, the root of I is associated with the original rectangle & = [ni]" x {0.1)
comprising the whole domain. The 2-round partition of 13 trivial it eontains o single part, the
+ostruetured R itoelf. Hoce we sisuply maintain the ~'-strnctured R C R, which mects the stating
condition for the game,

(2) e stp. T € the o ofthe srgunent. Supposiugthe gane s sescied e e

rectangle R node v,

Ve vank 10 ove o e pr-auctured subectonge  C L avexivinitha chldof s Srer,

st koep the width of the game state at most O(d) during this mave.

" the o oigl et it wihthe chlden of o b £ £ Becase € EUL

at lenst one of L and L*, say L, covers at least half of R. That is, the rectangle X' x V' == RN L

b density = 1/2 i ¥ Sioce st the st cose fn L § we e that

= RN\L isstill ppeestrctured. By Lemma 1 there exists some = € X such that {2°) x Y

i Pt e Lo e Partion o £ ascorcing 1o the 2ronnd seheme be £ = U 3 x Yo Lot i+

he unique index such that 2* € X', Recall that X* is asociated with some subset of blocks

1€ [n] such that all parts of the form X** ¥ are pestructured with fixp = I°. In particular,
wo have [1*] € O().

s Exploree. we now query the ioput bits in oordinates J 5= 1 ix e (in any order) obtaining
pone sring = € {0, 1) from the Adversany, As a resull, (e state of the gane
the extension of pg by 2, eall it 5, which has width [fsep"| B pe U J] £ O{d).

v

Mika Go6s

Monotone Circuits & Resolution

Note that there is some y* € ¥* (and hence some (z°,y°) € K11 L) such that Gia®.y°) is
cosistent it e, e whole £ (7)1 pr-e dends e, Tn the partition
of L, let I Y75 be the wnique pat such that. (s ) € LY. Note that L' is py-like for
some py: that it i o) e " extends oy, As Explorer, we
ow forget all qeried bits i ° except thos queriod a:.r,

recovered our imariant: the game state is py and wo maintain a pp-stmctured

W wo
subrectangle £ of an original roetanglo L. Morcover, the width of the game state remsined Ofd)

(3) Leaf case. Suppose the game state is p and we are maintaining an associated p-structured
subreetangle & C R corresponding 10 a leaf node. The leaf node is et it e soton
0 O satisfying R (§ ) (o}, that is, C(R) € §7{e). But G(R) = 71 (1) by Lemma 3 s0
that C;*(1) € §7 (). Therefore the game ends. This concludes the (simplified) proof.

33 Accounting for error

et wo cxplnin o (0 et rid of (e asumption () by counsin for e rovs o ol

lassiied s error in Lemma 5 for k artitioning of I1's rectangles is dane more
el o sort 1 rgnl rectingles topelngient oner Ry, Ry, .., Rye Trom lenves o
root, that is,if A, is » descendant of A, e o e Ry in the order. The we process the

Initialize cumulative ernor sets XZ, = Yoo, =0 ltcrate for i =1.2.... 0 rounds:
L. Remove from Ry the rows/cohuams Xy, Vite. That is, npdate

B e Ri (X {0,110 o] = Vi

2. Run the 2-round partitioning scheme for Ry, Output all g subrectangles that satisfy
the “structired” case of Lemva 5 for k= 2dlog n. (Al nonstrctured subtectangles are
omitted). Call the resulting error rows /eolumns X, and Y.

5 Update X5, ¢ X Xeo and 3y 6 V3, U Vor.

In words. an original rectangle R, is processed only aftex all of its descendaats are partitioned. Each
descendant may contribute some error ows columns, accumulated into sets X5, ¥, which are
deleted from R, before . i partitioned. The partitioning of R, will in tuen contribate its error
rowsjeolumns to its ancestors
We way now repeat the proof of Section 5.2 sing anly the structurd subretangles autput by
e above process. We highlight two key properties that allow the proof to go through verbatim
Pt the et o o the o of e procss s s K iy b drsiy ot ost
el = < 1/4 by o wnion bound aver all rownds. In particular, et rectangle i, (with
rons s ) il . ety = 113 sl " ¢ {0117 sl 50 1 +-tevevueed Thi
allows 15 to meet the starting condition for the game.
Second, by construction, th eunilative error sets grow as we walk from keaves towards the
coot. This means that our ervor handling docs ot interfeze with the intemual step: cach
structured subrectangle & of R iscovered by
of s chil
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Open problems
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Open problems

Q1. Lifting for dags over intersections-of-k-triangles

(Resolution over Cutting Planes)

Rectangle Triangle
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Open problems

Q1. Lifting for dags over intersections-of-k-triangles

(Resolution over Cutting Planes)

Q2. Lifting for nondeterministic NOF protocols

(Towards dag-like LBs for semi-algebraic proof systems)

Q3. Superlinear depth for small monotone circuits?
(Razborov’16: “A New Kind of Tradeoff”)
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Open problems

Q1. Lifting for dags over intersections-of-k-triangles

(Resolution over Cutting Planes)

Q2. Lifting for nondeterministic NOF protocols

(Towards dag-like LBs for semi-algebraic proof systems)

Q3. Superlinear depth for small monotone circuits?
(Razborov’16: “A New Kind of Tradeoff”)

Cheers!
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