

A Composition Theorem for Conical Juntas

<u>Mika Göös</u> University of Toronto T.S. Jayram IBM Almaden

A composition theorem for conical juntas

Motivation - Randomised communication

AND-OR trees

1	Set-disjointness $OR_n \circ AND_2$	$\Omega(n)$	[KS'87] [Raz'91] [BJKS'04] (info)
2	Tribes $\operatorname{AND}_{\sqrt{n}} \circ \operatorname{OR}_{\sqrt{n}} \circ \operatorname{AND}_2$	$\Omega(n)$	[J KS'03] (info) [HJ'13]
k	$\operatorname{AND}_{n^{1/k}} \circ \cdots \circ \operatorname{OR}_{n^{1/k}} \circ \operatorname{AND}_2$	$n/2^{O(k)}$	[JKR'09] (info) [LS'10] (info)

Motivation - Randomised communication

AND-OR trees

1	Set-disjointness $OR_n \circ AND_2$	$\Omega(n)$	[KS'87] [Raz'91] [B J KS'04] (info)
2	Tribes $AND_{\sqrt{n}} \circ OR_{\sqrt{n}} \circ AND_2$	$\Omega(n)$	[J KS'03] (info) [HJ'13]
k	$\operatorname{AND}_{n^{1/k}} \circ \cdots \circ \operatorname{OR}_{n^{1/k}} \circ \operatorname{AND}_2$	$n/2^{O(k)}$	[JKR'09] (info) [LS'10] (info)
log n	$AND_2 \circ \cdots \circ OR_2 \circ AND_2$	$O(n^{0.753}) \ \Omega(\sqrt{n})$	[Snir'85] [JKZ'10]
		└→ Gap!	

New tool – Conical juntas

New tool – Conical juntas

Communication-to-query theorem [GLMWZ'15]:

For every boolean function
$$f : \{0,1\}^n \to \{0,1\}$$
,
 $\mathbf{BPP}^{\mathbf{cc}}_{\epsilon}(f \circ \mathrm{IP}_{\log n}) \ge \Omega(\deg^+_{\epsilon}(f))$

Conical juntas: Nonnegative combination of conjunctions OR₂: $\frac{1}{2}x_1 + \frac{1}{2}x_2 + \frac{1}{2}\bar{x}_1x_2 + \frac{1}{2}x_1\bar{x}_2$

• Approximate conical junta degree $\deg_{\epsilon}^{+}(f)$ is the least degree of a conical junta *h* such that

$$\forall x \in \{0,1\}^n : |f(x) - h(x)| \le \epsilon.$$

New tool – Conical juntas

Communication-to-query theorem [GLMWZ'15]:

For every boolean function
$$f: \{0,1\}^n \to \{0,1\}$$
,
 $\mathbf{BPP}^{\mathbf{cc}}_{\epsilon}(f \circ \mathrm{IP}_{\log n}) \ge \Omega(\deg^+_{\epsilon}(f))$

Conical juntas: Nonnegative combination of conjunctions OR₂: $\frac{1}{2}x_1 + \frac{1}{2}x_2 + \frac{1}{2}\bar{x}_1x_2 + \frac{1}{2}x_1\bar{x}_2$

• Approximate conical junta degree $\deg_{\epsilon}^{+}(f)$ is the least degree of a conical junta *h* such that

$$\forall x \in \{0,1\}^n : \quad |f(x) - h(x)| \le \epsilon.$$

Previous talk: 0-1 coefficients = Unambiguous DNFs

New tool – Big picture

This work:

A Composition Theorem for Conical Juntas

That is: Want to understand approximate conical junta degree of $f \circ g$ in terms of f and g

Our results – Applications

Query: •
$$\deg_{1/n}^+(\operatorname{NAND}^{\circ k}) \ge \Omega(n^{0.753...})$$

• $\deg_{1/n}^+(\operatorname{MAJ}_3^{\circ k}) \ge \Omega(2.59...^k)$

Our results – Applications

Query: •
$$\deg_{1/n}^+(\text{NAND}^{\circ k}) \ge \Omega(n^{0.753...})$$

• $\deg_{1/n}^+(\text{MAJ}_3^{\circ k}) \ge \Omega(2.59...^k)$

Previously: $O(2.65^k) \ge \mathbf{BPP^{dt}}(MAJ_3^{\circ k}) \ge \Omega(2.57^k)$ [JKS'03, LNPV'06, Leo'13, MNSSTX'15]

Note: Unamplifiability of error

Our results – Applications

Query: •
$$\deg_{1/n}^+(\text{NAND}^{\circ k}) \ge \Omega(n^{0.753...})$$

• $\deg_{1/n}^+(\text{MAJ}_3^{\circ k}) \ge \Omega(2.59...^k)$

Communication: • BPP^{cc}(NAND^{ok}) $\geq \tilde{\Omega}(n^{0.753...})$ • BPP^{cc}(MAJ₃^{ok}) $\geq \Omega(2.59^k)$

Note: Log-factor loss

Simplification: Consider **zero-error** conical juntas *Example:* $adeg(OR_2) = 3/2$, $adeg(MAJ_3) = 8/3$

Simplification: Consider **zero-error** conical juntas *Example:* $adeg(OR_2) = 3/2$, $adeg(MAJ_3) = 8/3$

First formalisation attempt

 $\operatorname{adeg}(f \circ g) \ge \operatorname{adeg}(f) \cdot \min \left\{ \operatorname{adeg}(g), \operatorname{adeg}(\neg g) \right\}$

Average degree
For
$$h = \sum w_C C$$
, $adeg_x(h) := \sum w_C |C| \cdot C(x)$
 $adeg(h) := max_x adeg_x(h)$

Simplification: Consider **zero-error** conical juntas *Example:* $adeg(OR_2) = 3/2$, $adeg(MAJ_3) = 8/3$

First formalisation attempt

 $\operatorname{adeg}(f \circ g) \ge \operatorname{adeg}(f) \cdot \min \left\{ \operatorname{adeg}(g), \operatorname{adeg}(\neg g) \right\}$

Counter-example! $adeg(OR_2 \circ MAJ_3) = 3.92... < 4$

Formalisation – LP duality

 $adeg(h; b_0, b_1)$ – charge b_i for reading an input bit that is *i*

Formalisation – Statement of theorem

Regular certificates: Circumventing the counter-example■ Require that Ψ is balanced (has a primal meaning!)

Formalisation – Statement of theorem

Regular certificates: Circumventing the counter-example

- Require that Ψ is **balanced** (has a primal meaning!)
- Require that Ψ_1 and Ψ_0 for f and $\neg f$ "share structure"

Formalisation – Statement of theorem

Regular certificates: Circumventing the counter-example

- Require that Ψ is **balanced** (has a primal meaning!)
- Require that Ψ_1 and Ψ_0 for f and $\neg f$ "share structure"

Composition Theorem

Suppose we have regular LP certificates witnessing

$$\begin{aligned} \operatorname{adeg}(g) &\geq b_1 & \operatorname{adeg}(f; b_0, b_1) \geq a_1 \\ \operatorname{adeg}(\neg g) &\geq b_0 & \operatorname{adeg}(\neg f; b_0, b_1) \geq a_0 \end{aligned}$$

then $f \circ g$ admits a regular LP certificate witnessing

$$\operatorname{adeg}(f \circ g) \ge a_1$$
$$\operatorname{adeg}(\neg f \circ g) \ge a_0$$

Regular certificates for MAJ₃

 $\begin{array}{cccccc} MAJ_3 & MAJ_3^{\circ 2} & MAJ_3^{\circ 3} & MAJ_3^{\circ 4} \\ \mbox{# dual variables:} & 3 & 5 & 9 & 17 \\ \mbox{lower bound:} & 2.5 & 2.581...^2 & 2.596...^3 & Open! \end{array}$

Subsequent application

Eight-author paper: Anshu, Belovs, Ben-David, Göös, Jain, Kothari, Lee, and Santha [ECCC'16]

- 1 $\exists \text{ total } F : \text{ BPP}^{\text{cc}}(F) \geq \tilde{\Omega}(\text{BQP}^{\text{cc}}(F)^{2.5})$
- **2** \exists total F: **BPP^{cc}** $(F) \ge \log^{2-o(1)} \chi(F)$

Subsequent application

Eight-author paper: Anshu, Belovs, Ben-David, Göös, Jain, Kothari, Lee, and Santha [ECCC'16]

- $\exists \text{ total } F: \text{ BPP}^{cc}(F) \geq \tilde{\Omega}(\text{BQP}^{cc}(F)^{2.5})$
- **2** $\exists \operatorname{total} F : \operatorname{\mathbf{BPP^{cc}}}(F) \ge \log^{2-o(1)} \chi(F)$

Proof idea for 1

 $deg_{\epsilon}^{+}(SIMON_{n} \circ AND_{n} \circ OR_{n}) \geq \Omega(n^{2.5})$ $\downarrow Communication-to-query$ $BPP^{cc}(SIMON_{n} \circ AND_{n} \circ OR_{n} \circ IP_{\log n}) \geq \tilde{\Omega}(n^{2.5})$ $\downarrow Cheat sheet technique$ $BPP^{cc}((SIMON_{n} \circ AND_{n} \circ OR_{n} \circ IP_{\log n})_{CS}) \geq \tilde{\Omega}(n^{2.5})$

Open problems

Composition theorems:

- Explain why our composition theorem works!-)
- Better certificates for MAJ₃^{ok}?
- Does a composition theorem hold for **BPP**^{dt}?

Simulation theorems:

- Communication-to-query simulation for **BPP**?
- Constant-size gadgets for junta-based simulation?
- More things to do with conical juntas?

Open problems

Composition theorems:

- Explain why our composition theorem works!-)
- Better certificates for MAJ₃^{ok}?
- Does a composition theorem hold for **BPP**^{dt}?

Simulation theorems:

- Communication-to-query simulation for BPP?
- Constant-size gadgets for junta-based simulation?
- More things to do with conical juntas?

Cheers!