

A Composition Theorem for Conical Juntas

Mika Göös University of Toronto
T.S. Jayram IBM Almaden

Motivation - Randomised communication

And-Or trees

1	Set-disjointness $\mathrm{OR}_{n} \circ \mathrm{AND}_{2}$	$\Omega(n)$	$\begin{aligned} & {\left[\mathrm{KS}^{\prime} 87\right]} \\ & {\left[\mathrm{Raz}^{\prime} 91\right]} \\ & {\left[B J K S^{\prime} 04\right] \text { (info) }} \end{aligned}$
2	Tribes $\mathrm{AND}_{\sqrt{n}} \circ \mathrm{OR}_{\sqrt{n}} \circ \mathrm{AND}_{2}$	$\Omega(n)$	$\begin{aligned} & \text { [JKS'03] (info) } \\ & \text { [HJ'13] } \end{aligned}$
k	$\mathrm{AND}_{n^{1 / k}} \circ \cdots \circ \mathrm{OR}_{n^{1 / k}} \circ \mathrm{AND}_{2}$	$n / 2^{O(k)}$	[JKR'09] (info) [LS'10] (info)

Motivation - Randomised communication

And-Or trees

1	Set-disjointness $\mathrm{OR}_{n} \circ \mathrm{AND}_{2}$	$\Omega(n)$	[KS'87] [Raz'91] [BJKS'04] (info)
2	Tribes $\mathrm{AND}_{\sqrt{n}} \circ \mathrm{OR}_{\sqrt{n}} \circ \mathrm{AND}_{2}$	$\Omega(n)$	$\begin{aligned} & \text { [JKS'03] (info) } \\ & {\left[\mathrm{HJ}^{\prime} 13\right]} \end{aligned}$
k	$\mathrm{AND}_{n^{1 / k}} \circ \cdots \circ \mathrm{OR}_{n^{1 / k}} \circ \mathrm{AND}_{2}$	$n / 2^{O(k)}$	$\begin{aligned} & \text { [JKR'09] (info) } \\ & {\left[\text { LS' }^{\prime} 10\right] \text { (info) }} \end{aligned}$
$\log n$	$\mathrm{AND}_{2} \circ \cdots \circ \mathrm{OR}_{2} \circ \mathrm{AND}_{2}$	$\begin{aligned} & O\left(n^{0.753 \ldots}\right) \\ & \Omega(\sqrt{n}) \end{aligned}$	[Snir'85] [JKZ'10]

New tool - Conical juntas

Communication-to-query theorem [GLMWZ'15]:

For every boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$,

$$
\mathbf{B P P}_{\epsilon}^{\mathbf{c c}}\left(f \circ \mathrm{IP}_{\log n}\right) \geq \Omega\left(\operatorname{deg}_{\epsilon}^{+}(f)\right)
$$

New tool - Conical juntas

Communication-to-query theorem [GLMWZ'15]:

For every boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$,

$$
\mathbf{B P} \mathbf{P}_{\epsilon}^{\mathbf{c c}}\left(f \circ \mathrm{IP}_{\log n}\right) \geq \Omega\left(\operatorname{deg}_{\epsilon}^{+}(f)\right)
$$

- Conical juntas: Nonnegative combination of conjunctions

$$
\mathrm{OR}_{2}: \quad \frac{1}{2} x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} \bar{x}_{1} x_{2}+\frac{1}{2} x_{1} \bar{x}_{2}
$$

- Approximate conical junta degree $\operatorname{deg}_{\epsilon}^{+}(f)$ is the least degree of a conical junta h such that

$$
\forall x \in\{0,1\}^{n}: \quad|f(x)-h(x)| \leq \epsilon
$$

New tool - Conical juntas

Communication-to-query theorem [GLMWZ'15]:

For every boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$,

$$
\mathbf{B P P}_{\epsilon}^{\mathrm{cc}}\left(f \circ \mathrm{IP}_{\log n}\right) \geq \Omega\left(\operatorname{deg}_{\epsilon}^{+}(f)\right)
$$

- Conical juntas: Nonnegative combination of conjunctions

$$
\mathrm{OR}_{2}: \quad \frac{1}{2} x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} \bar{x}_{1} x_{2}+\frac{1}{2} x_{1} \bar{x}_{2}
$$

- Approximate conical junta degree $\operatorname{deg}_{\epsilon}^{+}(f)$ is the least degree of a conical junta h such that

$$
\forall x \in\{0,1\}^{n}: \quad|f(x)-h(x)| \leq \epsilon
$$

■ Previous talk: 0-1 coefficients = Unambiguous DNFs

New tool - Big picture

This work:

A Composition Theorem for Conical Juntas

That is: Want to understand approximate conical junta degree of $f \circ g$ in terms of f and g

Our results - Applications

$$
\begin{aligned}
\text { Query: } & \cdot \operatorname{deg}_{1 / n}^{+}\left(\text {NAND }^{\circ k}\right) \geq \Omega\left(n^{0.753 \ldots . .}\right) \\
& \cdot \operatorname{deg}_{1 / n}^{+}\left(\text {MAJ }_{3}^{\circ k}\right) \geq \Omega\left(2.59 \ldots{ }^{k}\right)
\end{aligned}
$$

Our results - Applications

$$
\begin{aligned}
\text { Query: } & \text { - } \operatorname{deg}_{1 / n}^{+}\left(\mathrm{NAND}^{\circ k}\right) \geq \Omega\left(n^{0.753 \ldots}\right) \\
& \bullet \operatorname{deg}_{1 / n}^{+}\left(\mathrm{MAJ}_{3}^{\circ k}\right)
\end{aligned}
$$

Previously: $O\left(2.65^{k}\right) \geq \mathbf{B P P}^{\mathrm{dt}}\left(\mathrm{MAJ}_{3}^{\circ k}\right) \geq \Omega\left(2.57^{k}\right)$ [JKS'03, LNPV'06, Leo'13, MNSSTX'15]

Note: Unamplifiability of error

Our results - Applications

$$
\begin{aligned}
\text { Query: } & \text { - } \operatorname{deg}_{1, n}^{+}\left(\mathrm{NANN}^{\circ k}\right) \geq \Omega\left(n^{0.753 \ldots}\right) \\
& \bullet \operatorname{deg}_{1 / n}^{+}\left(\mathrm{MAJ}_{3}^{\circ}\right)
\end{aligned} \geq \Omega\left(2.59 \ldots . .{ }^{k}\right)
$$

Communication: - BPP ${ }^{\text {cc }}\left(\right.$ NAND $\left.^{\circ k}\right) \geq \tilde{\Omega}\left(n^{0.753 . . .}\right)$

- $\mathbf{B P P}^{\mathbf{c c}}\left(\mathrm{MAJ}_{3}^{\mathrm{ok}}\right) \geq \Omega\left(2.59^{k}\right)$

Note: Log-factor loss

Formalising the composition theorem

Average degree

$$
\text { For } h=\sum w_{C} C
$$

$$
\begin{aligned}
\operatorname{adeg}_{x}(h) & :=\sum w_{C}|C| \cdot C(x) \\
\operatorname{adeg}(h) & :=\max _{x} \operatorname{adeg}_{x}(h)
\end{aligned}
$$

Formalising the composition theorem

Average degree

For $h=\sum w_{C} C$,

$$
\begin{aligned}
\operatorname{adeg}_{x}(h) & :=\sum w_{C}|C| \cdot C(x) \\
\operatorname{adeg}(h) & :=\max _{x} \operatorname{adeg}_{x}(h)
\end{aligned}
$$

Simplification: Consider zero-error conical juntas
Example: $\operatorname{adeg}\left(\mathrm{OR}_{2}\right)=3 / 2, \quad \operatorname{adeg}\left(\mathrm{MAJ}_{3}\right)=8 / 3$

Formalising the composition theorem

Average degree

For $h=\sum w_{C} C$,

$$
\begin{aligned}
\operatorname{adeg}_{x}(h) & :=\sum w_{C}|C| \cdot C(x) \\
\operatorname{adeg}(h) & :=\max _{x} \operatorname{adeg}_{x}(h)
\end{aligned}
$$

Simplification: Consider zero-error conical juntas
Example: $\operatorname{adeg}\left(\mathrm{OR}_{2}\right)=3 / 2, \quad \operatorname{adeg}\left(\mathrm{MAJ}_{3}\right)=8 / 3$

First formalisation attempt

$\operatorname{adeg}(f \circ g) \geq \operatorname{adeg}(f) \cdot \min \{\operatorname{adeg}(g), \operatorname{adeg}(\neg g)\} ?$

Formalising the composition theorem

Average degree

For $h=\sum w_{C} C$,

$$
\begin{aligned}
\operatorname{adeg}_{x}(h) & :=\sum w_{C}|C| \cdot C(x) \\
\operatorname{adeg}(h) & :=\max _{x} \operatorname{adeg}_{x}(h)
\end{aligned}
$$

Simplification: Consider zero-error conical juntas
Example: $\operatorname{adeg}\left(\mathrm{OR}_{2}\right)=3 / 2, \quad \operatorname{adeg}\left(\mathrm{MAJ}_{3}\right)=8 / 3$

First formalisation attempt

$\operatorname{adeg}(f \circ g) \geq \operatorname{adeg}(f) \cdot \min \{\operatorname{adeg}(g), \operatorname{adeg}(\neg g)\} ?$
Counter-example! $\operatorname{adeg}\left(\mathrm{OR}_{2} \circ \mathrm{MAJ}_{3}\right)=3.92 \ldots<4$

Formalisation - LP duality

$\operatorname{adeg}\left(h ; b_{0}, b_{1}\right)$ - charge b_{i} for reading an input bit that is i

Primal / Dual for average degree of f

$$
\begin{array}{rlr}
\min & \operatorname{adeg}\left(\sum w_{C} C ; b_{0}, b_{1}\right) & \\
\text { subject to } & \sum w_{C} C(x)=f(x), & \forall x \\
& w_{C} \geq 0, & \forall C \\
& \max & \langle\Psi, f\rangle \\
\text { subject to } & \langle\Psi, C\rangle \leq \operatorname{adeg}\left(C ; b_{0}, b_{1}\right), & \forall C \\
& \Psi(x) \in \mathbb{R}, & \forall x
\end{array}
$$

Formalisation - Statement of theorem

Regular certificates: Circumventing the counter-example
 - Require that Ψ is balanced (has a primal meaning!)

Formalisation - Statement of theorem

Regular certificates: Circumventing the counter-example

- Require that Ψ is balanced (has a primal meaning!)
- Require that Ψ_{1} and Ψ_{0} for f and $\neg f$ "share structure"

Formalisation - Statement of theorem

Regular certificates: Circumventing the counter-example

- Require that Ψ is balanced (has a primal meaning!)
- Require that Ψ_{1} and Ψ_{0} for f and $\neg f$ "share structure"

Composition Theorem

Suppose we have regular LP certificates witnessing

$$
\begin{aligned}
\operatorname{adeg}(g) & \geq b_{1} & \operatorname{adeg}\left(f ; b_{0}, b_{1}\right) & \geq a_{1} \\
\operatorname{adeg}(\neg g) & \geq b_{0} & \operatorname{adeg}\left(\neg f ; b_{0}, b_{1}\right) & \geq a_{0}
\end{aligned}
$$

then $f \circ g$ admits a regular LP certificate witnessing

$$
\begin{array}{r}
\operatorname{adeg}(f \circ g) \geq a_{1} \\
\operatorname{adeg}(\neg f \circ g) \geq a_{0}
\end{array}
$$

Regular certificates for MAJ_{3}

Subsequent application

Eight-author paper: Anshu, Belovs, Ben-David, Göös, Jain, Kothari, Lee, and Santha [ECCC'16]
$\mathbf{1 1} \quad \exists$ total $F: \quad \operatorname{BPP}^{\mathrm{cc}}(F) \geq \tilde{\Omega}\left(\operatorname{BQP}^{\mathrm{cc}}(F)^{2.5}\right)$
$\mathbf{\boxed { 2 }} \quad \exists$ total $F: \quad \operatorname{BPP}^{\mathrm{cc}}(F) \geq \log ^{2-o(1)} \chi(F)$

Subsequent application

Eight-author paper: Anshu, Belovs, Ben-David, Göös, Jain, Kothari, Lee, and Santha [ECCC'16]
$1 \exists$ total $F: \quad \operatorname{BPP}^{c c}(F) \geq \tilde{\Omega}\left(\operatorname{BQP}^{c c}(F)^{2.5}\right)$
$2 \quad \exists$ total $F: \quad \operatorname{BPP}^{\mathbf{c c}}(F) \geq \log ^{2-o(1)} \chi(F)$

Proof idea for 1

$$
\begin{aligned}
& \operatorname{deg}_{\epsilon}^{+}\left(\mathrm{SIMON}_{n} \circ \mathrm{AND}_{n} \circ \mathrm{OR}_{n}\right) \geq \Omega\left(n^{2.5}\right) \\
& \quad \Downarrow \text { Communication-to-query } \\
& \mathbf{B P P}^{\mathbf{c c}}\left(\mathrm{SIMON}_{n} \circ \mathrm{AND}_{n} \circ \mathrm{OR}_{n} \circ \mathrm{IP}_{\log n}\right) \geq \tilde{\Omega}\left(n^{2.5}\right) \\
& \quad \Downarrow \text { Cheat sheet technique } \\
& \mathbf{B P P}^{\mathbf{c c}}\left(\left(\mathrm{SIMON}_{n} \circ \mathrm{AND}_{n} \circ \mathrm{OR}_{n} \circ \mathrm{IP}_{\log n}\right)_{\mathrm{CS}}\right) \geq \tilde{\Omega}\left(n^{2.5}\right)
\end{aligned}
$$

Open problems

Composition theorems:

- Explain why our composition theorem works!-)
- Better certificates for $\mathrm{MAJ}_{3}{ }^{\circ k}$?
- Does a composition theorem hold for $\mathbf{B P} \mathbf{P}^{\text {dt }}$?

Simulation theorems:

- Communication-to-query simulation for BPP?
- Constant-size gadgets for junta-based simulation?
- More things to do with conical juntas?

Open problems

Composition theorems:

- Explain why our composition theorem works!-)
- Better certificates for $\mathrm{MAJ}_{3}{ }^{\circ k}$?
- Does a composition theorem hold for $\mathbf{B P} \mathbf{P}^{\text {dtt }}$?

Simulation theorems:

- Communication-to-query simulation for BPP?
- Constant-size gadgets for junta-based simulation?
- More things to do with conical juntas?

Cheers!

