

Lower Bounds for Clique vs. Independent Set

Mika Göös University of Toronto

Mika Göös (Univ. of Toronto)

Clique vs. Independent Set

On page 6 . . .

CIS problem

CIS problem

Alice Clique $x \subseteq [n]$ of *G*

Bob Independent set $y \subseteq [n]$ of *G*

Mika Göös (Univ. of Toronto)

Clique vs. Independent Set

CIS problem

AliceBobClique $x \subseteq [n]$ of GIndependent set $y \subseteq [n]$ of G

Compute: $CIS_G(x, y) = |x \cap y|$

Mika Göös (Univ. of Toronto)

Clique vs. Independent Set

Yannakakis's motivation:

Size of LPs for the vertex packing polytope of *G Breakthrough:* [*Fiorini et al., STOC'12*]

Yannakakis's motivation:

Size of LPs for the vertex packing polytope of *G Breakthrough:* [*Fiorini et al., STOC'12*]

Known bounds:

$$\forall G: \qquad \mathbf{NP^{cc}}(\mathrm{CIS}_G) = \lceil \log n \rceil \qquad (\mathrm{guess} \ x \cap y)$$

Yannakakis's motivation:

Size of LPs for the vertex packing polytope of *G Breakthrough:* [*Fiorini et al., STOC'12*]

Known bounds:

- $\forall G: \qquad \mathbf{NP^{cc}}(\mathrm{CIS}_G) = \lceil \log n \rceil \qquad (\mathrm{guess} \ x \cap y)$
- $\forall G: \quad \mathbf{coNP^{cc}}(\mathrm{CIS}_G) \leq O(\log^2 n)$

Yannakakis's motivation:

Size of LPs for the vertex packing polytope of *G Breakthrough:* [*Fiorini et al., STOC'12*]

Known bounds:

$\forall G:$	$\mathbf{NP^{cc}}(\mathrm{CIS}_G) = \lceil \log n \rceil$	(guess $x \cap y$)
$\forall G:$	$\operatorname{coNP^{cc}}(\operatorname{CIS}_G) \leq O(\log^2 n)$	

Yannakakis's question:

$$\forall G: \quad \mathbf{coNP^{cc}}(\mathrm{CIS}_G) \leq O(\log n)$$
?

Alon–Saks–Seymour conjecture:

$$\forall G: \qquad \chi(G) \leq bp(G) + 1 \qquad \checkmark$$

Yannakakis's question:

$$\forall G: \quad coNP^{cc}(CIS_G) \leq O(\log n)$$
?

Mika Göös (Univ. of Toronto)

Clique vs. Independent Set

[Huang–Sudakov, 2010]: $\exists G : \chi(G) \ge bp(G)^{6/5}$

Yannakakis's question:
$$\forall G:$$
 $\mathbf{coNP^{cc}}(\operatorname{CIS}_G) \leq O(\log n)$

Polynomial Alon–Saks–Seymour conjecture:

$$\forall G: \qquad \chi(G) \leq \operatorname{poly}(\operatorname{bp}(G)) \qquad ?$$

Yannakakis's question:

$$\forall G: \quad coNP^{cc}(CIS_G) \leq O(\log n)$$
?

Mika Göös (Univ. of Toronto)

Clique vs. Independent Set

Mika Göös (Univ. of Toronto)

Our result

Main theorem

$$\exists G: \quad \mathbf{coNP^{cc}}(\mathrm{CIS}_G) \geq \Omega(\log^{1.128} n)$$

Our result

Main theorem

$$\exists G: \quad \mathbf{coNP^{cc}}(\mathrm{CIS}_G) \geq \Omega(\log^{1.128} n)$$

Prior bounds

Measure	Lower bound	Reference
Pcc	$2 \cdot \log n$	Kushilevitz, Linial, and Ostrovsky (1999)
coNP ^{cc}	$6/5 \cdot \log n$	Huang and Sudakov (2010)
coNP ^{cc}	$3/2 \cdot \log n$	Amano (2014)
coNP ^{cc}	$2 \cdot \log n$	Shigeta and Amano (2014)

Our result

Main theorem

$$\exists G: \quad \mathbf{coNP^{cc}}(\mathrm{CIS}_G) \geq \Omega(\log^{1.128} n)$$

Proof strategy:

Query complexity \longrightarrow Communication complexity

Cf. lower bounds for log-rank [Nisan–Wigderson, 1995]

Mika Göös (Univ. of Toronto)

Clique vs. Independent Set

0	1	1	1	0	1	1	1
0	1	1	1	0	1	1	1
0	1	1	1	0	0	0	0
0	1	1	1	1	1	0	1
0	0	0	1	1	1	0	1
1	1	1	1	1	1	1	1
1	1	1	1	0	1	1	1
0	0	0	0	0	1	1	1

 $F\colon \mathcal{X} \times \mathcal{Y} \to \{0,1\}$

0	1	1	1	0	1	1	1
0	1	1	1	0	1	1	1
0	1	1	1	0	0	0	0
0	1	1	1	1	1	0	1
0	0	0	1	1	1	0	1
1	1	1	1	1	1	1	1
1	1	1	1	0	1	1	1
0	0	0	0	0	1	1	1

0	1	1	1	0	1	1	1
0	1	1	1	0	1	1	1
0	1	1	1	0	0	0	0
0	1	1	1	0	0	0	1
0	0	0	1	1	1	0	1
1	1	1	1	1	1	1	1
1	1	1	0	0	0	1	1
0	0	0	0	0	0	1	1

 CIS_G is complete for $\operatorname{UP^{cc}}$: $F \leq \operatorname{CIS}_G$ $\operatorname{UP^{cc}}(F) = \operatorname{UP^{cc}}(\operatorname{CIS}_G) = \log n$

Restatement of Main theorem:

$$\exists F \colon \mathcal{X} \times \mathcal{Y} \to \{0, 1\} \qquad \mathbf{coNP^{cc}}(F) \geq \mathbf{UP^{cc}}(F)^{1.128}$$

Restatement of Main theorem:

$$\exists F \colon \mathcal{X} \times \mathcal{Y} \to \{0, 1\} \qquad \mathbf{coNP^{cc}}(F) \geq \mathbf{UP^{cc}}(F)^{1.128}$$

Query separation:

$$\exists f: \{0,1\}^n \to \{0,1\} \quad \text{coNP}^{\text{dt}}(f) \geq \mathbf{UP}^{\text{dt}}(f)^{1.128}$$

Restatement of Main theorem:

$$\exists F \colon \mathcal{X} \times \mathcal{Y} \to \{0, 1\} \qquad \mathbf{coNP^{cc}}(F) \geq \mathbf{UP^{cc}}(F)^{1.128}$$

Query separation:

 $\exists f \colon \{0,1\}^n \to \{0,1\} \qquad \mathbf{coNP^{dt}}(f) \geq \mathbf{UP^{dt}}(f)^{1.128}$

Decision tree complexity measures:

- **NP^{dt}** = DNF width = 1-certificate complexity
- **coNP**^{dt} = CNF width = 0-certificate complexity
 - **UP**^{dt} = Unambiguous DNF width

Restatement of Main theorem:

$$\exists F \colon \mathcal{X} \times \mathcal{Y} \to \{0, 1\} \qquad \mathbf{coNP^{cc}}(F) \geq \mathbf{UP^{cc}}(F)^{1.128}$$

Query separation:

 $\exists f \colon \{0,1\}^n \to \{0,1\} \qquad \mathbf{coNP^{dt}}(f) \geq \mathbf{UP^{dt}}(f)^{1.128}$

Agenda:

- **Step 1:** Query separation
- Step 2: Simulation theorem [GLMWZ, 2015]

Step 1: Query separation

Example: Let $f(x_1, x_2, x_3) = 1$ iff $x_1 + x_2 + x_3 \in \{1, 2\}$

UP^{dt}(
$$f$$
) = 2 because $f \equiv x_1 \bar{x}_2 \lor x_2 \bar{x}_3 \lor x_3 \bar{x}_1$
coNP^{dt}(f) = 3 because 0-input $\vec{0}$ is *fully sensitive*

Example: Let $f(x_1, x_2, x_3) = 1$ iff $x_1 + x_2 + x_3 \in \{1, 2\}$ **UP^{dt}**(f) = 2 because $f \equiv x_1 \bar{x}_2 \lor x_2 \bar{x}_3 \lor x_3 \bar{x}_1$ **coNP^{dt}**(f) = 3 because 0-input $\vec{0}$ is *fully sensitive*

$$f^{1}(\cdot) \coloneqq f(\cdot)$$
$$f^{i+1}(\cdot) \coloneqq f(f^{i}(\cdot), f^{i}(\cdot), f^{i}(\cdot))$$

Example: Let $f(x_1, x_2, x_3) = 1$ iff $x_1 + x_2 + x_3 \in \{1, 2\}$ **UP^{dt}**(f) = 2 because $f \equiv x_1 \bar{x}_2 \lor x_2 \bar{x}_3 \lor x_3 \bar{x}_1$ **coNP^{dt}**(f) = 3 because 0-input $\vec{0}$ is *fully sensitive*

$$f^{1}(\cdot) \coloneqq f(\cdot)$$
$$f^{i+1}(\cdot) \coloneqq f(f^{i}(\cdot), f^{i}(\cdot), f^{i}(\cdot))$$

Example: Let $f(x_1, x_2, x_3) = 1$ iff $x_1 + x_2 + x_3 \in \{1, 2\}$ **UP^{dt}**(f) = 2 because $f \equiv x_1 \bar{x}_2 \lor x_2 \bar{x}_3 \lor x_3 \bar{x}_1$ **coNP^{dt}**(f) = 3 because 0-input $\vec{0}$ is *fully sensitive*

Problem!

In order to certify "
$$f^i(\cdot) = 1$$
", (should be *easy*) might need to certify " $f^{i-1}(\cdot) = 0$ " (should be *hard*)

Problem!

Solution: Enlarge input/output alphabets

 $f\colon (\{0\}\cup\Sigma)^n\to \{0\}\cup\Sigma$

Problem!

In order to certify "
$$f^i(\cdot) = 1$$
", (should be *easy*) might need to certify " $f^{i-1}(\cdot) = 0$ " (should be *hard*)

Solution: Enlarge input/output alphabets

$$f\colon (\{0\}\cup\Sigma)^n\to \{0\}\cup\Sigma$$

Now: In order to certify " $f^i(\cdot) = \sigma$ " for $\sigma \in \Sigma$, only need to certify " $f^{i-1}(\cdot) = \sigma'$ " for $\sigma' \in \Sigma$

 $x_1 x_2 x_3$ $x_4 x_5 x_6$ $x_7 x_8 x_9$

Defining f

Any two certificates in an **UP^{dt}** decision tree intersect in variables

⇒ Finite projective planes!

Defining f

Incidence ordering:

Each node orders its incident edges using numbers from [3]

Defining *f*

Inputs to nodes:

Pointer values from $\{0\} \cup [3]$ $\stackrel{\text{II pointer}}{=\Sigma}$

Defining $f: (\{0\} \cup [3])^7 \to \{0, 1\}$

Say edge *e* is *satisfied* on input *x* iff all nodes $v \in e$ point to *e* under *x*

f(x) = 1 iff *x* satisfies an edge

Clearly $\mathbf{UP^{dt}}(f) = 3$

Problem!

Certifying " $f(\vec{0}) = 0$ " too easy!

Add input weights: $f \circ g^7$

Gadget *g* is such that deciding if $g(\cdot) = i$ for $i \in [3]$ costs *i* queries

Add input weights: $f \circ g^7$

Gadget *g* is such that deciding if $g(\cdot) = i$ for $i \in [3]$ costs *i* queries

1**	\mapsto	1
2** 02*	$\stackrel{\mapsto}{\mapsto}$	2 2
3** 03* 003	$\stackrel{1}{{\rightarrow}} \stackrel{1}{{\rightarrow}} \stackrel{1}{{\rightarrow}}$	3 3 3
Else	\mapsto	0

Key properties:

 $\mathbf{UP^{dt}}(f \circ g^7) = 1 + 2 + 3 = 6$

Certifying " $(f \circ g^7)(\vec{0}) = 0$ " requires (**# edges**) = 7 queries

Key properties:

UP^{dt} $(f \circ g^7) = 1 + 2 + 3 = 6$ Certifying " $(f \circ g^7)(\vec{0}) = 0$ " requires (**# edges**) = 7 queries

(Magic numerology: $57 \approx 36^{1.128}$)

Query separation: $\exists f: \{0,1\}^n \rightarrow \{0,1\}$ $\mathbf{coNP^{dt}}(f) \geq \mathbf{UP^{dt}}(f)^{1.128}$

Step 2: Simulation theorem from

"Rectangles Are Nonnegative Juntas"

Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman (STOC'15)

Composed functions $f \circ g^n$

Examples: Set-disjointness: $OR \circ AND^n$ Inner-product: $XOR \circ AND^n$

Composed functions $f \circ g^n$

Compose with gⁿ

Examples: Set-disjointness: $OR \circ AND^n$ Inner-product: $XOR \circ AND^n$

In general: $g: \{0,1\}^b \times \{0,1\}^b \rightarrow \{0,1\}$ is a small gadget

Alice holds x ∈ {0,1}^{bn}
Bob holds y ∈ {0,1}^{bn}

We choose: g = inner-product with $b = \Theta(\log n)$ bits per party

8

 $x_1 y_1 x_2 y_2 x_3 y_3 x_4 y_4 x_5 y_5$

Approximation by juntas

Conical *d*-junta:

Nonnegative combination of *d*-conjunctions (Example: $0.4 \cdot z_1 \overline{z}_2 + 0.66 \cdot z_2 \overline{z}_3 + 0.35 \cdot z_3 \overline{z}_1$)

Approximation by juntas

Conical *d*-junta:

Nonnegative combination of *d*-conjunctions (Example: $0.4 \cdot z_1 \overline{z}_2 + 0.66 \cdot z_2 \overline{z}_3 + 0.35 \cdot z_3 \overline{z}_1$)

Main Structure Theorem:

Suppose Π is cost-*d* randomised protocol for $f \circ g^n$ Then there exists a conical *d*-junta *h* s.t. $\forall z \in \text{dom } f$:

$$\Pr_{(\boldsymbol{x},\boldsymbol{y})\sim(g^n)^{-1}(z)}[\Pi(\boldsymbol{x},\boldsymbol{y}) \text{ accepts }] \approx h(z)$$

Approximation by juntas

Conical *d*-junta:

Nonnegative combination of *d*-conjunctions (Example: $0.4 \cdot z_1 \overline{z}_2 + 0.66 \cdot z_2 \overline{z}_3 + 0.35 \cdot z_3 \overline{z}_1$)

Main Structure Theorem:

Suppose Π is cost-*d* randomised protocol for $f \circ g^n$ Then there exists a conical *d*-junta *h* s.t. $\forall z \in \text{dom } f$:

$$\Pr_{(\boldsymbol{x},\boldsymbol{y})\sim(g^n)^{-1}(z)}[\Pi(\boldsymbol{x},\boldsymbol{y}) \text{ accepts }] \approx h(z)$$

Cf. Polynomial approximation [Razborov, Sherstov, Shi–Zhu,...]:

Approximate poly-degree of AND = $\Theta(\sqrt{n})$ Approximate junta-degree of AND = $\Theta(n)$

Corollaries

Simulation for NP:

$$\mathbf{NP^{cc}}(f \circ g^n) = \Theta(\mathbf{NP^{dt}}(f) \cdot b)$$

...recall $b = \Theta(\log n)$

Conical *d*-junta: $0.4 \cdot z_1 \bar{z}_2 + 0.66 \cdot z_2 \bar{z}_3 + 0.35 \cdot z_3 \bar{z}_1$

d-DNF: $z_1 \overline{z}_2 \lor z_2 \overline{z}_3 \lor z_3 \overline{z}_1$

Corollaries

Simulation for NP:

$$\mathbf{NP^{cc}}(f \circ g^n) = \Theta(\mathbf{NP^{dt}}(f) \cdot b)$$

...recall $b = \Theta(\log n)$

Trivially: $UP^{cc}(f \circ g^n) \leq O(UP^{dt}(f) \cdot b)$

Main theorem follows!

Corollaries

Main result

 $\exists G: \quad \mathbf{coNP^{cc}}(\mathrm{CIS}_G) \ge \Omega(\log^{1.128} n)$

Open problems

- Better separation for **coNP**^{dt} vs. **UP**^{dt}?
- Simulation theorems for new models (e.g., **BPP**)
- Improve gadget size down to b = O(1) (Would give new proof of Ω(n) bound for set-disjointness)

Main result

 $\exists G: \quad \mathbf{coNP^{cc}}(\mathrm{CIS}_G) \ge \Omega(\log^{1.128} n)$

Open problems

- Better separation for **coNP**^{dt} vs. **UP**^{dt}?
- Simulation theorems for new models (e.g., **BPP**)
- Improve gadget size down to b = O(1) (Would give new proof of Ω(n) bound for set-disjointness)

Cheers!