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CIS problem [Yannakakis, STOC’88]

G = ([n], E)

Alice

Clique x ⊆ [n] of G

Bob

Independent set y ⊆ [n] of G
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CIS problem [Yannakakis, STOC’88]

G = ([n], E)

Alice
Clique x ⊆ [n] of G

Bob
Independent set y ⊆ [n] of G

Compute: CISG(x, y) = |x ∩ y|
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Background

Yannakakis’s motivation:
Size of LPs for the vertex packing polytope of G
Breakthrough: [Fiorini et al., STOC’12]

Known bounds:
NPcc(CISG) = dlog ne (guess x ∩ y)∀G :

coNPcc(CISG) ≤ O(log2 n)∀G :

Yannakakis’s question:

coNPcc(CISG) ≤ O(log n) ?∀G :

Alon–Saks–Seymour conjecture:

χ(G) ≤ bp(G) + 1 ?∀G :

Mika Göös (Univ. of Toronto) Clique vs. Independent Set 23rd February 2015 3 / 14



Background

Yannakakis’s motivation:
Size of LPs for the vertex packing polytope of G
Breakthrough: [Fiorini et al., STOC’12]

Known bounds:
NPcc(CISG) = dlog ne (guess x ∩ y)∀G :

coNPcc(CISG) ≤ O(log2 n)∀G :

Yannakakis’s question:

coNPcc(CISG) ≤ O(log n) ?∀G :

Alon–Saks–Seymour conjecture:

χ(G) ≤ bp(G) + 1 ?∀G :
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Known bounds:
NPcc(CISG) = dlog ne (guess x ∩ y)∀G :

coNPcc(CISG) ≤ O(log2 n)∀G :

Yannakakis’s question:

coNPcc(CISG) ≤ O(log n) ?∀G :

Alon–Saks–Seymour conjecture:

χ(G) ≤ bp(G) + 1 ?∀G :

[Huang–Sudakov, 2010]: ∃G : χ(G) ≥ bp(G)6/5
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χ(G) ≤ poly( bp(G)) ?∀G :

[Alon–Haviv]

=
⇒

=
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Our result

Main theorem

∃G : coNPcc(CISG) ≥ Ω(log1.128 n)
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Our result

Main theorem

∃G : coNPcc(CISG) ≥ Ω(log1.128 n)

Prior bounds
Measure Lower bound Reference

Pcc 2 · log n Kushilevitz, Linial, and Ostrovsky (1999)
coNPcc 6/5 · log n Huang and Sudakov (2010)
coNPcc 3/2 · log n Amano (2014)
coNPcc 2 · log n Shigeta and Amano (2014)

Mika Göös (Univ. of Toronto) Clique vs. Independent Set 23rd February 2015 4 / 14



Our result

Main theorem

∃G : coNPcc(CISG) ≥ Ω(log1.128 n)

Proof strategy:

Query complexity −→ Communication complexity

Cf. lower bounds for log-rank
[Nisan–Wigderson, 1995]
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Models of communication
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0 F : X ×Y → {0, 1}

Mika Göös (Univ. of Toronto) Clique vs. Independent Set 23rd February 2015 5 / 14



Models of communication

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

0

0

0

0

0

0

0

0

0

0 0

0

0

0 0 0 0

0

0

0

0 NPcc
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Models of communication
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;

CISG is complete for UPcc: F ≤ CISG

UPcc(F) = UPcc(CISG) = log n
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Proof strategy

Restatement of Main theorem:

coNPcc(F) ≥ UPcc(F)1.128∃F : X ×Y → {0, 1}

Query separation:

coNPdt( f ) ≥ UPdt( f )1.128∃ f : {0, 1}n → {0, 1}
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Proof strategy

Restatement of Main theorem:

coNPcc(F) ≥ UPcc(F)1.128∃F : X ×Y → {0, 1}

Query separation:

coNPdt( f ) ≥ UPdt( f )1.128∃ f : {0, 1}n → {0, 1}

Decision tree complexity measures:

NPdt = DNF width = 1-certificate complexity
coNPdt = CNF width = 0-certificate complexity

UPdt = Unambiguous DNF width
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Proof strategy

Restatement of Main theorem:

coNPcc(F) ≥ UPcc(F)1.128∃F : X ×Y → {0, 1}

Query separation:

coNPdt( f ) ≥ UPdt( f )1.128∃ f : {0, 1}n → {0, 1}

Agenda:

Step 1: Query separation

Step 2: Simulation theorem [GLMWZ, 2015]

Mika Göös (Univ. of Toronto) Clique vs. Independent Set 23rd February 2015 6 / 14



Step 1: Query separation
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Warm-up

Example: Let f (x1, x2, x3) = 1 iff x1 + x2 + x3 ∈ {1, 2}

UPdt( f ) = 2 because f ≡ x1 x̄2 ∨ x2 x̄3 ∨ x3 x̄1

coNPdt( f ) = 3 because 0-input~0 is fully sensitive

Recursive composition:

f 1( · ) := f ( · )
f i+1( · ) := f ( f i( · ), f i( · ), f i( · ))

Hope: coNPdt( f i)

UPdt( f i)
≥
(

3
2

)i

Problem!

In order to certify “ f i( · ) = 1”, (should be easy)
might need to certify “ f i−1( · ) = 0” (should be hard)
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Warm-up

Example: Let f (x1, x2, x3) = 1 iff x1 + x2 + x3 ∈ {1, 2}
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Hope: coNPdt( f i)

UPdt( f i)
≥
(

3
2

)i

Problem!

In order to certify “ f i( · ) = 1”, (should be easy)
might need to certify “ f i−1( · ) = 0” (should be hard)

Solution: Enlarge input/output alphabets

f : ({0} ∪ Σ)n → {0} ∪ Σ

Now: In order to certify “ f i( · ) = σ” for σ ∈ Σ,
only need to certify “ f i−1( · ) = σ′” for σ′ ∈ Σ
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Defining f

Any two certificates in an UPdt

decision tree intersect in variables

=⇒ Finite projective planes!

Recursive composition

Key trick:

({0} ∪ Σ)n → {0, 1}From
({0} ∪ Σ)n → {0} ∪ {pointers}Construct
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Defining f
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2 3

Incidence ordering:

Each node orders its incident
edges using numbers from [3]

Recursive composition

Key trick:

({0} ∪ Σ)n → {0, 1}From
({0} ∪ Σ)n → {0} ∪ {pointers}Construct
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Defining f

0

0

Inputs to nodes:

Pointer values from {0} ∪ [3]︸︷︷︸
=Σ(0 is a null pointer)

Recursive composition

Key trick:

({0} ∪ Σ)n → {0, 1}From
({0} ∪ Σ)n → {0} ∪ {pointers}Construct
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Defining f

0

0

Defining f : ({0} ∪ [3])7 → {0, 1}

Say edge e is satisfied on input x iff
all nodes v ∈ e point to e under x

f (x) = 1 iff x satisfies an edge

Clearly UPdt( f ) = 3

Recursive composition

Key trick:

({0} ∪ Σ)n → {0, 1}From
({0} ∪ Σ)n → {0} ∪ {pointers}Construct
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Defining f

0 0

0

0 0 0

0

Problem!

Certifying “ f (~0) = 0” too easy!

Recursive composition

Key trick:

({0} ∪ Σ)n → {0, 1}From
({0} ∪ Σ)n → {0} ∪ {pointers}Construct
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Add input weights: f ◦ g7

Gadget g is such that deciding if
g( · ) = i for i ∈ [3] costs i queries

Recursive composition

Key trick:

({0} ∪ Σ)n → {0, 1}From
({0} ∪ Σ)n → {0} ∪ {pointers}Construct
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Add input weights: f ◦ g7

Gadget g is such that deciding if
g( · ) = i for i ∈ [3] costs i queries

1∗∗ 7→ 1

2∗∗ 7→ 2
0 2 ∗ 7→ 2

3∗∗ 7→ 3
0 3 ∗ 7→ 3
0 0 3 7→ 3

Else 7→ 0

Recursive composition

Key trick:

({0} ∪ Σ)n → {0, 1}From
({0} ∪ Σ)n → {0} ∪ {pointers}Construct
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Key properties:

UPdt( f ◦ g7) = 1 + 2 + 3 = 6

Certifying “( f ◦ g7)(~0) = 0”
requires (# edges) = 7 queries

Recursive composition

Key trick:

({0} ∪ Σ)n → {0, 1}From
({0} ∪ Σ)n → {0} ∪ {pointers}Construct
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Magic numerology: 57 ≈ 361.128
)
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Query separation:

coNPdt( f ) ≥ UPdt( f )1.128∃ f : {0, 1}n → {0, 1}

Step 2: Simulation theorem from

“Rectangles Are Nonnegative Juntas”

Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson,
and David Zuckerman (STOC’15)
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Composed functions f ◦ gn

f f

z1 z2 z3 z4 z5 g g g g g

x1 y1 x2 y2 x3 y3 x4 y4 x5 y5

Compose with gn

Examples: Set-disjointness: OR ◦ANDn

Inner-product: XOR ◦ANDn

In general: g : {0, 1}b × {0, 1}b → {0, 1} is a small gadget

Alice holds x ∈ {0, 1}bn

Bob holds y ∈ {0, 1}bn

We choose: g = inner-product with b = Θ(log n) bits per party
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Approximation by juntas

Conical d-junta:
Nonnegative combination of d-conjunctions
(Example: 0.4 · z1z̄2 + 0.66 · z2z̄3 + 0.35 · z3z̄1)

Main Structure Theorem:

Suppose Π is cost-d randomised protocol for f ◦ gn

Then there exists a conical d-junta h s.t. ∀z ∈ dom f :

Pr
(x,y)∼(gn)−1(z)

[Π(x,y) accepts ] ≈ h(z)

Cf. Polynomial approximation [Razborov, Sherstov, Shi–Zhu,. . . ]:

Approximate poly-degree of AND = Θ(
√

n)
Approximate junta-degree of AND = Θ(n)
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Corollaries

Simulation for NP:

NPcc( f ◦ gn) = Θ(NPdt( f ) · b)
. . . recall b = Θ(log n)

Conical d-junta: 0.4 · z1z̄2 + 0.66 · z2z̄3 + 0.35 · z3z̄1;

d-DNF: z1z̄2 ∨ z2z̄3 ∨ z3z̄1
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Corollaries

Simulation for NP:

NPcc( f ◦ gn) = Θ(NPdt( f ) · b)
. . . recall b = Θ(log n)

Trivially: UPcc( f ◦ gn) ≤ O(UPdt( f ) · b)

Main theorem follows!
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Corollaries

Also covered!

Simulation for NP:

NPcc( f ◦ gn) = Θ(NPdt( f ) · b)
. . . recall b = Θ(log n)

P

BPP

NP MA

SBPWAPP PostBPP PP
corruptionsmooth rectangle ext. discrepancy discrepancy
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Summary

Main result

∃G : coNPcc(CISG) ≥ Ω(log1.128 n)

Open problems

Better separation for coNPdt vs. UPdt?
Simulation theorems for new models (e.g., BPP)
Improve gadget size down to b = O(1)
(Would give new proof of Ω(n) bound for set-disjointness)

Cheers!
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