Lower Bounds for
 Clique vs. Independent Set

Mika Göös
University of Toronto

$$
\text { On page } 6 \ldots
$$

CIS problem

CIS problem

Alice

Clique $x \subseteq[n]$ of G

Bob
Independent set $y \subseteq[n]$ of G

CIS problem

$$
G=([n], E)
$$

Alice

Clique $x \subseteq[n]$ of G

Bob

Independent set $y \subseteq[n]$ of G

Compute: $\operatorname{CIS}_{G}(x, y)=|x \cap y|$

Background

Yannakakis's motivation:

Size of LPs for the vertex packing polytope of G Breakthrough: [Fiorini et al., STOC'12]

Background

Yannakakis's motivation:

Size of LPs for the vertex packing polytope of G Breakthrough: [Fiorini et al., STOC'12]

Known bounds:
$\forall G: \quad \mathbf{N P}^{\mathbf{c c}}\left(\mathrm{CIS}_{G}\right)=\lceil\log n\rceil \quad$ (guess $\left.x \cap y\right)$

Background

Yannakakis's motivation:

Size of LPs for the vertex packing polytope of G Breakthrough: [Fiorini et al., STOC'12]

Known bounds:

$$
\begin{array}{rlrl}
\forall G: & \quad \mathbf{N P}^{\mathbf{c c}}\left(\mathrm{CIS}_{G}\right) & =\lceil\log n\rceil & (\text { guess } x \cap y) \\
\forall G: & \boldsymbol{c o N P}^{\mathbf{c c}}\left(\mathrm{CIS}_{G}\right) & \leq O\left(\log ^{2} n\right)
\end{array}
$$

Background

Yannakakis's motivation:

Size of LPs for the vertex packing polytope of G Breakthrough: [Fiorini et al., STOC'12]

Known bounds:

$$
\begin{aligned}
\forall G: & \quad \mathbf{N P}^{\mathbf{c c}}\left(\mathrm{CIS}_{G}\right)
\end{aligned}=\lceil\log n\rceil \quad(\text { guess } x \cap y)
$$

Yannakakis's question:

$\forall G: \quad \operatorname{coNP}{ }^{\mathbf{c c}}\left(\mathrm{CIS}_{G}\right) \leq O(\log n) \quad ?$

Background

Alon-Saks-Seymour conjecture:

$\forall G$:

$$
\chi(G) \leq \mathrm{bp}(G)+1
$$

$$
?
$$

Yannakakis's question:

$\forall G: \quad \operatorname{coNP}^{\text {cc }}\left(\mathrm{CIS}_{G}\right) \leq O(\log n) \quad ?$

Background

Alon-Saks-Seymour conjecture:

$\forall G$:

?
[Huang-Sudakov, 2010]: $\exists G: \chi(G) \geq \mathrm{bp}(G)^{6 / 5}$

Yannakakis's question:

$\forall G: \quad \operatorname{coNP}{ }^{c c}\left(\mathrm{CIS}_{G}\right) \leq O(\log n) \quad ?$

Background

Polynomial Alon-Saks-Seymour conjecture:

$\forall G$:

$$
\chi(G) \leq \operatorname{poly}(\operatorname{bp}(G)) \quad ?
$$

Yannakakis's question:

$$
\forall G: \quad \operatorname{coNP}^{\mathrm{cc}}\left(\mathrm{CIS}_{G}\right) \leq O(\log n) \quad ?
$$

Background

Polynomial Alon-Saks-Seymour conjecture:

$\forall G: \quad \chi(G) \leq \operatorname{poly}(\operatorname{bp}(G)) \quad ?$

Yannakakis's question:

$\forall G: \quad \operatorname{coNP}{ }^{c c}\left(\mathrm{CIS}_{G}\right) \leq O(\log n) \quad ?$

Background

Our result

Main theorem

$$
\exists G: \quad \operatorname{coNP}{ }^{c c}\left(\operatorname{CIS}_{G}\right) \geq \Omega\left(\log ^{1.128} n\right)
$$

Our result

Main theorem

$$
\exists G: \quad \operatorname{coNP}{ }^{c c}\left(\mathrm{CIS}_{G}\right) \geq \Omega\left(\log ^{1.128} n\right)
$$

Prior bounds

Measure	Lower bound	Reference
$\mathrm{P}^{c c}$	$2 \cdot \log n$	Kushilevitz, Linial, and Ostrovsky (1999)
$\operatorname{coN} \mathrm{N}^{c c}$	$6 / 5 \cdot \log n$	Huang and Sudakov (2010)
$\operatorname{coN} \mathrm{N}^{c c}$	$3 / 2 \cdot \log n$	Amano (2014)
$\operatorname{coN} \mathrm{P}^{c c}$	$2 \cdot \log n$	Shigeta and Amano (2014)

Our result

Main theorem

$$
\exists G: \quad \operatorname{coNP}{ }^{c c}\left(\mathrm{CIS}_{G}\right) \geq \Omega\left(\log ^{1.128} n\right)
$$

Proof strategy:

Query complexity \longrightarrow Communication complexity

Cf. lower bounds for log-rank
[Nisan-Wigderson, 1995]

Models of communication

0	1	1	1	0	1	1	1
0	1	1	1	0	1	1	1
0	1	1	1	0	0	0	0
0	1	1	1	1	1	0	1
0	0	0	1	1	1	0	1
1	1	1	1	1	1	1	1
1	1	1	1	0	1	1	1
0	0	0	0	0	1	1	1

$$
F: \mathcal{X} \times \mathcal{Y} \rightarrow\{0,1\}
$$

Models of communication

0	1	1	1	0	1	1	1
0	1	1	1	0	1	1	1
0	1	1	1	0	0	0	0
0	1	1	1	1	1	0	1
0	0	0	1	1	1	0	1
1	1	1	1	1	1	1	1
1	1	1	1	0	1	1	1
0	0	0	0	0	1	1	1

$N^{c c}$

Models of communication

| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |

UP ${ }^{\text {cc }}$

Models of communication

| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |

CIS_{G} is complete for $\mathrm{UP}^{\mathrm{cc}}: \quad F \leq \mathrm{CIS}_{G}$ $\mathbf{U P}^{\mathbf{c c}}(F)=\mathbf{U P}{ }^{\mathbf{c c}}\left(\mathrm{CIS}_{G}\right)=\log n$

Proof strategy

Restatement of Main theorem:
 $\exists F: \mathcal{X} \times \mathcal{Y} \rightarrow\{0,1\} \quad \operatorname{coNP}{ }^{\mathbf{c c}}(F) \geq \mathbf{U P}^{\mathbf{c c}}(F)^{1.128}$

Proof strategy

Restatement of Main theorem:
 $\exists F: \mathcal{X} \times \mathcal{Y} \rightarrow\{0,1\} \quad \operatorname{coNP}{ }^{\mathbf{c c}}(F) \geq \mathbf{U P}{ }^{\mathbf{c c}}(F)^{1.128}$

Query separation:

$$
\exists f:\{0,1\}^{n} \rightarrow\{0,1\} \quad \operatorname{coNP}^{\mathbf{d t}}(f) \geq \mathbf{U P}^{\mathbf{d t}}(f)^{1.128}
$$

Proof strategy

Restatement of Main theorem:
 $\exists F: \mathcal{X} \times \mathcal{Y} \rightarrow\{0,1\} \quad \operatorname{coNP}{ }^{\mathbf{c c}}(F) \geq \mathbf{U P}^{\mathbf{c c}}(F)^{1.128}$

Query separation:

$$
\exists f:\{0,1\}^{n} \rightarrow\{0,1\} \quad \operatorname{coNP}^{\mathbf{d t}}(f) \geq \mathbf{U P}^{\mathbf{d t}}(f)^{1.128}
$$

Decision tree complexity measures:

$$
\begin{aligned}
\mathbf{N P}^{\mathbf{d t}} & =\text { DNF width }=1 \text {-certificate complexity } \\
\text { coNP }{ }^{\mathrm{dt}} & =\text { CNF width }=0 \text {-certificate complexity } \\
\mathbf{U P}^{\mathrm{dt}} & =\text { Unambiguous DNF width }
\end{aligned}
$$

Proof strategy

Restatement of Main theorem:
 $\exists F: \mathcal{X} \times \mathcal{Y} \rightarrow\{0,1\} \quad \operatorname{coNP}{ }^{\mathbf{c c}}(F) \geq \mathbf{U P}^{\mathbf{c c}}(F)^{1.128}$

Query separation:

$$
\exists f:\{0,1\}^{n} \rightarrow\{0,1\} \quad \operatorname{coNP}^{\mathbf{d t}}(f) \geq \mathbf{U P}^{\mathbf{d t}}(f)^{1.128}
$$

Agenda:

- Step 1: Query separation
- Step 2: Simulation theorem [GLMWZ, 2015]

Step 1: Query separation

Warm-up

Example: Let $f\left(x_{1}, x_{2}, x_{3}\right)=1$ iff $x_{1}+x_{2}+x_{3} \in\{1,2\}$
$■ \mathbf{U P}^{\mathrm{dt}}(f)=2$ because $f \equiv x_{1} \bar{x}_{2} \vee x_{2} \bar{x}_{3} \vee x_{3} \bar{x}_{1}$

- coNP $\mathbf{P}^{\mathbf{d t}}(f)=3$ because 0 -input $\overrightarrow{0}$ is fully sensitive

Warm-up

Example: Let $f\left(x_{1}, x_{2}, x_{3}\right)=1$ iff $x_{1}+x_{2}+x_{3} \in\{1,2\}$
■ UP ${ }^{\mathbf{d t}}(f)=2$ because $f \equiv x_{1} \bar{x}_{2} \vee x_{2} \bar{x}_{3} \vee x_{3} \bar{x}_{1}$

- coNP $\mathbf{P}^{\mathrm{dt}}(f)=3$ because 0 -input $\overrightarrow{0}$ is fully sensitive

Recursive composition:

$$
\begin{aligned}
f^{1}(\cdot) & :=f(\cdot) \\
f^{i+1}(\cdot) & :=f\left(f^{i}(\cdot), f^{i}(\cdot), f^{i}(\cdot)\right)
\end{aligned}
$$

Warm-up

Example: Let $f\left(x_{1}, x_{2}, x_{3}\right)=1$ iff $x_{1}+x_{2}+x_{3} \in\{1,2\}$

- UP ${ }^{\mathbf{d t}}(f)=2$ because $f \equiv x_{1} \bar{x}_{2} \vee x_{2} \bar{x}_{3} \vee x_{3} \bar{x}_{1}$
$\square \operatorname{coNP}^{\mathrm{dt}}(f)=3$ because 0 -input $\overrightarrow{0}$ is fully sensitive

Recursive composition:

$$
\begin{aligned}
f^{1}(\cdot) & :=f(\cdot) \\
f^{i+1}(\cdot) & :=f\left(f^{i}(\cdot), f^{i}(\cdot), f^{i}(\cdot)\right)
\end{aligned}
$$

Warm-up

Example: Let $f\left(x_{1}, x_{2}, x_{3}\right)=1$ iff $x_{1}+x_{2}+x_{3} \in\{1,2\}$
■ UP ${ }^{\mathrm{dt}}(f)=2$ because $f \equiv x_{1} \bar{x}_{2} \vee x_{2} \bar{x}_{3} \vee x_{3} \bar{x}_{1}$

- coNP $\mathbf{P}^{\mathbf{d t}}(f)=3$ because 0 -input $\overrightarrow{0}$ is fully sensitive

Recursive composition:

$$
\begin{aligned}
f^{1}(\cdot) & :=f(\cdot) \\
f^{i+1}(\cdot) & :=f\left(f^{i}(\cdot), f^{i}(\cdot), f^{i}(\cdot)\right) \\
\text { Hope: } & \frac{\operatorname{coNP}^{\mathbf{d t}}\left(f^{i}\right)}{\mathbf{U P}^{\mathbf{d t}}\left(f^{i}\right)} \geq\left(\frac{3}{2}\right)^{i}
\end{aligned}
$$

Warm-up

Problem!

In order to certify " $f^{i}(\cdot)=1$ ", \quad (should be easy) might need to certify " $f^{i-1}(\cdot)=0$ " (should be hard)

Recursive composition:

$$
\begin{aligned}
f^{1}(\cdot) & :=f(\cdot) \\
f^{i+1}(\cdot) & :=f\left(f^{i}(\cdot), f^{i}(\cdot), f^{i}(\cdot)\right) \\
\text { Hope: } & \left.\frac{\text { coNP }}{\text { UP }^{\text {dt }}}\right)^{i}
\end{aligned}
$$

Warm-up

Problem!

In order to certify " $f^{i}(\cdot)=1$ ",
(should be easy)
might need to certify " $f^{i-1}(\cdot)=0$ " (should be hard)
Solution: Enlarge input/output alphabets

$$
f:(\{0\} \cup \Sigma)^{n} \rightarrow\{0\} \cup \Sigma
$$

Warm-up

Problem!

In order to certify " $f^{i}(\cdot)=1$ ",
(should be easy)
might need to certify " $f^{i-1}(\cdot)=0$ " (should be hard)
Solution: Enlarge input/output alphabets

$$
f:(\{0\} \cup \Sigma)^{n} \rightarrow\{0\} \cup \Sigma
$$

Now: In order to certify " $f^{i}(\cdot)=\sigma$ " for $\sigma \in \Sigma$, only need to certify " $f^{i-1}(\cdot)=\sigma^{\prime \prime}$ for $\sigma^{\prime} \in \Sigma$

Defining f

Defining f

Recursive composition

Key trick:
From
$(\{0\} \cup \Sigma)^{n} \rightarrow\{0,1\}$
Construct
$(\{0\} \cup \Sigma)^{n} \rightarrow\{0\} \cup\{$ pointers $\}$

Query separation:

$$
\exists f:\{0,1\}^{n} \rightarrow\{0,1\} \quad \boldsymbol{c o N P}^{\mathbf{d t}}(f) \geq \mathbf{U P}^{\mathrm{dt}}(f)^{1.128}
$$

Step 2: Simulation theorem from

"Rectangles Are Nonnegative Juntas"

Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman (STOC'15)

Composed functions $f \circ g^{n}$

Examples: Set-disjointness: OR $\circ \mathrm{AND}^{n}$ Inner-product: $\mathrm{XOR} \circ \mathrm{AND}^{n}$

Composed functions $f \circ g^{n}$

Compose with g^{n}

Examples: Set-disjointness: OR $\circ \mathrm{AND}^{n}$ Inner-product: XOR $\circ \mathrm{AND}^{n}$

In general: $g:\{0,1\}^{b} \times\{0,1\}^{b} \rightarrow\{0,1\}$ is a small gadget

- Alice holds $x \in\{0,1\}^{b n}$
- Bob holds $y \in\{0,1\}^{b n}$

We choose: $\quad g=$ inner-product with $b=\Theta(\log n)$ bits per party

Approximation by juntas

Conical d-junta:

Nonnegative combination of d-conjunctions
(Example: $0.4 \cdot z_{1} \bar{z}_{2}+0.66 \cdot z_{2} \bar{z}_{3}+0.35 \cdot z_{3} \bar{z}_{1}$)

Approximation by juntas

Conical d-junta:

Nonnegative combination of d-conjunctions
(Example: $0.4 \cdot z_{1} \bar{z}_{2}+0.66 \cdot z_{2} \bar{z}_{3}+0.35 \cdot z_{3} \bar{z}_{1}$)

Main Structure Theorem:

Suppose Π is cost- d randomised protocol for $f \circ g^{n}$ Then there exists a conical d-junta h s.t. $\forall z \in \operatorname{dom} f$:

$$
\operatorname{Pr}_{(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)}[\Pi(\boldsymbol{x}, \boldsymbol{y}) \text { accepts }] \approx h(z)
$$

Approximation by juntas

Conical d-junta:

Nonnegative combination of d-conjunctions
(Example: $0.4 \cdot z_{1} \bar{z}_{2}+0.66 \cdot z_{2} \bar{z}_{3}+0.35 \cdot z_{3} \bar{z}_{1}$)

Main Structure Theorem:

Suppose Π is cost- d randomised protocol for $f \circ g^{n}$ Then there exists a conical d-junta h s.t. $\forall z \in \operatorname{dom} f$:

$$
\operatorname{Pr}_{(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)}[\Pi(\boldsymbol{x}, \boldsymbol{y}) \text { accepts }] \approx h(z)
$$

Cf. Polynomial approximation [Razborov, Sherstov, Shi-Zhu,...]:

$$
\begin{aligned}
& \text { Approximate poly-degree of AND }=\Theta(\sqrt{n}) \\
& \text { Approximate junta-degree of AND }=\Theta(n)
\end{aligned}
$$

Corollaries

Simulation for NP:

$$
\mathbf{N P}^{\mathbf{c c}}\left(f \circ g^{n}\right)=\Theta\left(\mathbf{N P}^{\mathbf{d t}}(f) \cdot b\right)
$$

Conical d-junta: $\quad 0.4 \cdot z_{1} \bar{z}_{2}+0.66 \cdot z_{2} \bar{z}_{3}+0.35 \cdot z_{3} \bar{z}_{1}$

$$
d \text {-DNF: } \quad z_{1} \bar{z}_{2} \vee \quad z_{2} \bar{z}_{3} \vee \quad z_{3} \bar{z}_{1}
$$

Corollaries

Simulation for NP:

$$
\mathbf{N P}^{\mathbf{c c}}\left(f \circ g^{n}\right)=\Theta\left(\mathbf{N P}^{\mathbf{d t}}(f) \cdot b\right)
$$

Trivially: $\quad \mathbf{U P}^{\mathbf{c c}}\left(f \circ g^{n}\right) \leq O\left(\mathbf{U P}^{\mathbf{d t}}(f) \cdot b\right)$

Main theorem follows!

Corollaries

Simulation for NP:

$$
\begin{array}{r}
\mathbf{N P}^{\mathbf{c c}}\left(f \circ g^{n}\right)=\Theta\left(\mathbf{N P}^{\mathbf{d t}}(f) \cdot b\right) \\
\ldots \text { recall } b=\Theta(\log n)
\end{array}
$$

Summary

Main result

$■ \exists G: \quad \operatorname{coNP}{ }^{c c}\left(\mathrm{CIS}_{G}\right) \geq \Omega\left(\log ^{1.128} n\right)$

Open problems

■ Better separation for coNP ${ }^{\mathbf{d t}}$ vs. UP ${ }^{\text {dt }}$?
■ Simulation theorems for new models (e.g., BPP)

- Improve gadget size down to $b=O(1)$ (Would give new proof of $\Omega(n)$ bound for set-disjointness)

Summary

Main result

$■ \exists G: \quad \operatorname{coNP}{ }^{c c}\left(\mathrm{CIS}_{G}\right) \geq \Omega\left(\log ^{1.128} n\right)$

Open problems

■ Better separation for coNP ${ }^{\mathbf{d t}}$ vs. UP ${ }^{\text {dt }}$?
■ Simulation theorems for new models (e.g., BPP)

- Improve gadget size down to $b=O(1)$ (Would give new proof of $\Omega(n)$ bound for set-disjointness)

Cheers!

