

Query-to-Communication Lifting for BPP (incl. a pseudorandomness lemma)

<u>Mika Göös</u> Toniann Pitassi Thomas Watson Harvard & Simons Institute University of Toronto University of Memphis

Query vs. Communication

Decision trees

Communication protocols

Examples:

- Set-disjointness: $OR \circ AND^n$
 - Inner-product: XOR ANDⁿ
- Equality: $AND \circ \neg XOR^n$

In general: $g: \{0,1\}^m \times \{0,1\}^m \rightarrow \{0,1\}$ is a small gadget

Alice holds *x* ∈ ({0,1}^m)ⁿ
Bob holds *y* ∈ ({0,1}^m)ⁿ

Lifting Theorem Template:

$$\mathsf{M}^{\mathsf{cc}}(f \circ g^n) \approx \mathsf{M}^{\mathsf{dt}}(f)$$

М	Query	Communication	
P	deterministic	deterministic	[RM99, GPW15, dRNV16, HHL16]
NP	nondeterministic	nondeterministic	[GLM ⁺ 15, G15]
many	poly degree	rank	[SZ09, She11, RS10, RPRC16]
many	conical junta deg.	nonnegative rank	[GLM ⁺ 15, KMR17]
P ^{NP}	decision list	rectangle overlay	[GKPW17]
	Sherali–Adams	LP complexity	[CLRS16, KMR17]
	sum-of-squares	SDP complexity	[LRS15]

Lifting Theorem Template:

 $\mathsf{M}^{\mathsf{cc}}(f \circ g^n) \approx \mathsf{M}^{\mathsf{dt}}(f)$

Lifting theorem for BPP

Index gadget $g: [m] \times \{0,1\}^m \rightarrow \{0,1\}$ $g(x,y) = y_x$

 $BPP^{dt}(f) =$ randomised query complexity of f $BPP^{cc}(F) =$ randomised communication complexity of F

Our result

For $m = n^{100}$ and every function $f: \{0, 1\}^n \rightarrow \{0, 1\}$,

$$\mathsf{BPP^{cc}}(f \circ g^n) = \mathsf{BPP^{dt}}(f) \cdot \Theta(\log n)$$

New applications

$$\begin{split} \mathsf{BPP^{dt}}(f) \ \gg \ \mathsf{M^{dt}}(f) \\ & \Downarrow \\ \mathsf{BPP^{cc}}(f \circ g^n) \ \gg \ \mathsf{M^{cc}}(f \circ g^n) \end{split}$$

 $\mathsf{BPP}^{\mathsf{dt}}(f) \gg \mathsf{M}^{\mathsf{dt}}(f)$ $\mathsf{BPP^{cc}}(f \circ g^n) \ \gg \ \mathsf{M^{cc}}(f \circ g^n)$

Classical vs. Quantum

- 2.5-th power total function gap
- *Conjecture*: 2.5 improves to 3
- exponential partial function gap

[ABK16,ABB⁺16] [AA15] [Raz99,KR11]

BPP vs. Partition numbers

1-sided (= Clique vs. Independent Set) [GJPW15]
2-sided [AKK16,ABB⁺16]

Approximate Nash equilibria

[BR17]

$\mathsf{BPP}^{\mathsf{cc}}(f \circ g^n) \geq \mathsf{BPP}^{\mathsf{dt}}(f) \cdot \Omega(\log n)$

... how to begin?

What we actually prove

Input domain partitioned into **slices** $[m]^n \times (\{0,1\}^m)^n = \bigcup_{z \in \{0,1\}^n} (g^n)^{-1}(z)$

What we actually prove

Simulation

- \forall deterministic protocol Π
- \exists randomised decision tree of height $|\Pi|$ outputting a random transcript of Π such that $1 \approx 2$
 - 1 output of randomised decision tree on input *z*
 - **2** transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim (g^n)^{-1}(z)$

What we actually prove

Simulation

- \forall deterministic protocol Π
- \exists randomised decision tree of height $|\Pi|$ outputting a random transcript of Π such that $1 \approx 2$

1 output of randomised decision tree on input *z*

2 transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim (g^n)^{-1}(z)$

Main theorem: 1. pick $\Pi \sim \Pi$

pick Π ~ Π simulate Π via query access to z

3. output value of leaf

$$\mathbb{E}_{\substack{(x,y)\sim(g^n)^{-1}(z)}} \quad \overbrace{\Pr_{\boldsymbol{\Pi}}^{\mathbf{F}}[\boldsymbol{\Pi}(x,y) \text{ correct}]}^{\geq 2/3} = \mathbb{E}_{\boldsymbol{\Pi}\sim\boldsymbol{\Pi}} \quad \Pr_{\substack{(x,y)\sim(g^n)^{-1}(z)}}[\boldsymbol{\Pi}(x,y) \text{ correct}]$$

- 1 output of randomised decision tree on input z
- **2** transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim (g^n)^{-1}(z)$

- 1 output of randomised decision tree on input z
- **2** transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim (g^n)^{-1}(z)$

- 1 output of randomised decision tree on input z
- **2** transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim (g^n)^{-1}(z)$

- 1 output of randomised decision tree on input z
- **2** transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim (g^n)^{-1}(z)$

- 1 output of randomised decision tree on input z
- **2** transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim (g^n)^{-1}(z)$

- 1 output of randomised decision tree on input z
- **2** transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim (g^n)^{-1}(z)$

- 1 output of randomised decision tree on input z
- **2** transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim (g^n)^{-1}(z)$

- 1 output of randomised decision tree on input z
- **2** transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim (g^n)^{-1}(z)$

Pseudorandomness

Uniform Marginals Lemma:

Suppose $X \subseteq [m]^n$ is dense $Y \subseteq (\{0,1\}^m)^n$ is "large" Then $\forall z \in \{0,1\}^n$ the uniform distribution on $(g^n)^{-1}(z) \cap X \times Y$ has both marginal distributions close to uniform on X and Y

Dense: $\mathbf{H}_{\infty}(\mathbf{X}_{I}) \geq 0.9 \cdot |I| \log m \text{ for all } I \subseteq [n]$ [GLMWZ15]

When **density** is lost, restore it!

- Compute partition $X = \bigcup_i X^i$ where each X^i [GLMWZ15] is fixed on some $I \subseteq [n]$ and **dense** on \overline{I}
 - 2 Update $X \leftarrow X^i$ with probability $|X^i| / |X|$
- 3 Query $z_I \in \{0, 1\}^I$
- 4 Restrict *Y* so that $g^{I}(X_{I}, Y_{I}) = z_{I}$
- 5 Update $Y \leftarrow Y_{\overline{I}}$ and $X \leftarrow X_{\overline{I}}$ (which is **dense**)

When **density** is lost, restore it!

5 Update $Y \leftarrow Y_{\overline{I}}$ and $X \leftarrow X_{\overline{I}}$ (which is **dense**)

When **density** is lost, restore it!

- 1 Compute partition $X = \bigcup_i X^i$ where each X^i [GLMWZ15] is fixed on some $I \subseteq [n]$ and **dense** on \overline{I}
- 2 Update $X \leftarrow X^i$ with probability $|X^i|/|X|$ 3 Query $z_I \in \{0, 1\}^I$
- 4 Restrict Y so that $g^{I}(X_{I}, Y_{I}) = z_{I}$
- 5 Update $Y \leftarrow Y_{\overline{I}}$ and $X \leftarrow X_{\overline{I}}$ (which is **dense**)

When **density** is lost, restore it!

- 1 Compute partition $X = \bigcup_i X^i$ where each X^i [GLMWZ15] is fixed on some $I \subseteq [n]$ and **dense** on \overline{I}
 - Update $X \leftarrow X^i$ with probability $|X^i|/|X|$
 - Query $z_I \in \{0,1\}^I$
- 4 Restrict Y so that $g^I(X_I, Y_I) = z_I$
- 5 Update $Y \leftarrow Y_{\overline{I}}$ and $X \leftarrow X_{\overline{I}}$ (which is **dense**)

When **density** is lost, restore it!

- Compute partition $X = \bigcup_i X^i$ where each X^i [GLMWZ15] is fixed on some $I \subseteq [n]$ and **dense** on \overline{I}
- 2 Update $X \leftarrow X^i$ with probability $|X^i| / |X|$
- 3 Query $z_I \in \{0,1\}^I$
- 4 Restrict *Y* so that $g^{I}(X_{I}, Y_{I}) = z_{I}$
- 5 Update $Y \leftarrow Y_{\overline{I}}$ and $X \leftarrow X_{\overline{I}}$ (which is **dense**)

Correctness

- 1 #queries $\leq |\Pi|$ (whp)
- 2 Resulting transcript is close to that generated by random input from $(g^n)^{-1}(z)$

Some problems

Maybe doable

■ Lifting for BQP?

[ABG⁺17]

■ Lifting using **constant-size** gadgets?

Challenges

- Disprove the log-rank conjecture
- Explicit lower bounds against PH^{cc} ? Or even $SZK^{cc} \subseteq AM^{cc} \subseteq \Pi_2 P^{cc}$? [BCHTV16]

Maybe doable

Lifting for BQP?

[ABG⁺17]

■ Lifting using **constant-size** gadgets?

Challenges

- Disprove the log-rank conjecture
- Explicit lower bounds against PH^{cc} ? Or even $SZK^{cc} \subseteq AM^{cc} \subseteq \Pi_2 P^{cc}$? [BCHTV16]

Cheers!