

Query-to-Communication Lifting for BPP (incl. a pseudorandomness lemma)

Mika Göös Harvard E Simons Institute
Toniann Pitassi University of Toronto
Thomas Watson University of Memphis

Query vs. Communication

Decision trees

$$
F(x, y)
$$

Communication protocols

Composed functions $f \circ g^{n}$

Examples: - Set-disjointness: OR $\circ \mathrm{AND}^{n}$

- Inner-product: XOR $\circ \mathrm{AND}^{n}$
- Equality: AND $\circ \neg \mathrm{XOR}^{n}$

Composed functions $f \circ g^{n}$

In general: $g:\{0,1\}^{m} \times\{0,1\}^{m} \rightarrow\{0,1\}$ is a small gadget

- Alice holds $x \in\left(\{0,1\}^{m}\right)^{n}$
- Bob holds $y \in\left(\{0,1\}^{m}\right)^{n}$

Composed functions $f \circ g^{n}$

Lifting Theorem Template:

$$
\mathrm{M}^{c c}\left(f \circ g^{n}\right) \approx \mathrm{M}^{\mathrm{dt}}(f)
$$

Composed functions $f \circ g^{n}$

M	Query	Communication	
P	deterministic	deterministic	[RM99, GPW15, dRNV16, HHL16]
NP	nondeterministic	nondeterministic	[GLM ${ }^{+}$15, G15]
many	poly degree	rank	[SZ09, She11, RS10, RPRC16]
many	conical junta deg.	nonnegative rank	[GLM ${ }^{+}$15, KMR17]
$P^{\text {NP }}$	decision list	rectangle overlay	[GKPW17]
	Sherali-Adams	LP complexity	[CLRS16, KMR17]
	sum-of-squares	SDP complexity	[LRS15]

Lifting Theorem Template:

$$
\mathrm{M}^{\mathrm{cc}}\left(f \circ g^{n}\right) \approx \mathrm{M}^{\mathrm{dt}}(f)
$$

Lifting theorem for BPP

$$
\text { Index gadget } g:[m] \times\{0,1\}^{m} \rightarrow\{0,1\}
$$

$$
g(x, y)=y_{x}
$$

$\operatorname{BPP}^{\mathrm{dt}}(f)=$ randomised query complexity of f
$\operatorname{BPP}^{\mathrm{cc}}(F)=$ randomised communication complexity of F

Our result

For $m=n^{100}$ and every function $f:\{0,1\}^{n} \rightarrow\{0,1\}$,
$\operatorname{BPP}^{c c}\left(f \circ g^{n}\right)=\operatorname{BPP}^{\mathrm{dt}}(f) \cdot \Theta(\log n)$

New applications

$\operatorname{BPP}^{\mathrm{dt}}(f) \gg \mathrm{M}^{\mathrm{dt}}(f)$

$\operatorname{BPP}^{c c}\left(f \circ g^{n}\right) \gg \mathrm{M}^{c c}\left(f \circ g^{n}\right)$

Wapplications

$\operatorname{BPP}^{\mathrm{dt}}(f) \gg \mathrm{M}^{\mathrm{dt}}(f)$

$\operatorname{BPP}^{c c}\left(f \circ g^{n}\right) \gg M^{c c}\left(f \circ g^{n}\right)$

Classical vs. Quantum

■ 2.5-th power total function gap
$\left[\mathrm{ABK} 16, \mathrm{ABB}^{+} 16\right]$
■ Conjecture: 2.5 improves to 3
■ exponential partial function gap
[AA15]
[Raz99,KR11]

BPP vs. Partition numbers

■ 1-sided (= Clique vs. Independent Set) [GJPW15]

- 2-sided
[AKK16,ABB ${ }^{+}$16]
Approximate Nash equilibria

$\operatorname{BPP}^{c c}\left(f \circ g^{n}\right) \geq \operatorname{BPP}^{\mathrm{dt}}(f) \cdot \Omega(\log n)$
 . . . how to begin?

What we actually prove

Input domain partitioned into slices

$$
[m]^{n} \times\left(\{0,1\}^{m}\right)^{n}=\bigcup_{z \in\{0,1\}^{n}}\left(g^{n}\right)^{-1}(z)
$$

What we actually prove

Simulation

\forall deterministic protocol Π
\exists randomised decision tree of height $|\Pi|$ outputting a random transcript of Π such that $\mathbf{1} \approx \mathbf{2}$

1 output of randomised decision tree on input z
2 transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)$

What we actually prove

Simulation

\forall deterministic protocol Π
\exists randomised decision tree of height $|\Pi|$ outputting a random transcript of Π such that $\mathbf{1} \approx \mathbf{2}$
11 output of randomised decision tree on input z
2 transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)$

Main theorem: 1. pick $\Pi \sim \Pi$

2. simulate Π via query access to z
3. output value of leaf

$$
\underset{(x, y) \sim\left(g^{n}\right)^{-1}(z)}{\mathbb{E}} \overbrace{\underset{\Pi}{\operatorname{Pr}[\Pi(x, y) \text { correct }]}}^{>2 / 3}=\underset{\Pi \sim \boldsymbol{\Pi}}{\mathbb{E}} \operatorname{Pr}_{(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)}[\Pi(\boldsymbol{x}, \boldsymbol{y}) \text { correct }]
$$

Goal in pictures

Goal: $\mathbb{1} \approx \boxed{2}$

1 output of randomised decision tree on input z
2 transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)$

Goal in pictures

Goal: $\mathbb{1} \approx \boxed{2}$

1 output of randomised decision tree on input z
2 transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)$

Goal in pictures

Goal: $\mathbb{1} \approx \boxed{2}$

1 output of randomised decision tree on input z
2 transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)$

Goal in pictures

Goal: $\mathbb{1} \approx \boxed{2}$

1 output of randomised decision tree on input z
2 transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)$

Goal in pictures

Goal: $\mathbb{1} \approx \boxed{2}$

1 output of randomised decision tree on input z
2 transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)$

Goal in pictures

Goal: $\mathbb{1} \approx \boxed{2}$

1 output of randomised decision tree on input z
2 transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)$

Goal in pictures

Goal: $1 \approx \boxed{2}$

1 output of randomised decision tree on input z
2 transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)$

Goal in pictures

Goal: $1 \approx 2$

1 output of randomised decision tree on input z
2 transcript generated by Π on input $(\boldsymbol{x}, \boldsymbol{y}) \sim\left(g^{n}\right)^{-1}(z)$

Idea:

Pretend marginals are uniform!

Pseudorandomness

Uniform Marginals Lemma:

Suppose $X \subseteq[m]^{n}$ is dense $Y \subseteq\left(\{0,1\}^{m}\right)^{n}$ is "large"
Then $\forall z \in\{0,1\}^{n}$ the uniform distribution on $\left(g^{n}\right)^{-1}(z) \cap X \times Y$ has both marginal distributions close to uniform on X and Y

Dense: [GLMWZ15]

$\mathbf{H}_{\infty}\left(\boldsymbol{X}_{I}\right) \geq 0.9 \cdot|I| \log m$ for all $I \subseteq[n]$

Simulation

When density is lost, restore it!

1 Compute partition $X=\bigcup_{i} X^{i}$ where each X^{i}
2 Update $X \leftarrow X^{i}$ with probability $\left|X^{i}\right| /|X|$
3 Query $z_{I} \in\{0,1\}^{I}$
4 Restrict Y so that $g^{I}\left(X_{I}, Y_{I}\right)=z_{I}$
5 Update $Y \leftarrow Y_{\bar{I}}$ and $X \leftarrow X_{\bar{I}}$ (which is dense)

Simulation

When density is lost, restore it!

1 Compute partition $X=\bigcup_{i} X^{i}$ where each X^{i}
2 Update $X \leftarrow X^{i}$ with probability $\left|X^{i}\right| /|X|$
3 Query $z_{I} \in\{0,1\}^{I}$
4 Restrict Y so that $g^{I}\left(X_{I}, Y_{I}\right)=z_{I}$
5 Update $Y \leftarrow Y_{\bar{I}}$ and $X \leftarrow X_{\bar{I}}$ (which is dense)

Simulation

When density is lost, restore it!

1 Compute partition $X=\bigcup_{i} X^{i}$ where each X^{i}
[GLMWZ15] is fixed on some $I \subseteq[n]$ and dense on \bar{I}
2 Update $X \leftarrow X^{i}$ with probability $\left|X^{i}\right| /|X|$
3 Query $z_{I} \in\{0,1\}^{I}$
4 Restrict Y so that $g^{I}\left(X_{I}, Y_{I}\right)=z_{I}$
5 Update $Y \leftarrow Y_{\bar{I}}$ and $X \leftarrow X_{\bar{I}}$ (which is dense)

Simulation

When density is lost, restore it!

1 Compute partition $X=\bigcup_{i} X^{i}$ where each X^{i}
[GLMWZ15] is fixed on some $I \subseteq[n]$ and dense on \bar{I}
2 Update $X \leftarrow X^{i}$ with probability $\left|X^{i}\right| /|X|$
3 Query $z_{I} \in\{0,1\}^{I}$
4 Restrict Y so that $g^{I}\left(X_{I}, Y_{I}\right)=z_{I}$
5 Update $Y \leftarrow Y_{\bar{I}}$ and $X \leftarrow X_{\bar{I}}$ (which is dense)

Simulation

When density is lost, restore it!

1 Compute partition $X=\bigcup_{i} X^{i}$ where each X^{i}
2 Update $X \leftarrow X^{i}$ with probability $\left|X^{i}\right| /|X|$
3 Query $z_{I} \in\{0,1\}^{I}$
4 Restrict Y so that $g^{I}\left(X_{I}, Y_{I}\right)=z_{I}$
5 Update $Y \leftarrow Y_{\bar{I}}$ and $X \leftarrow X_{\bar{I}}$ (which is dense)

Correctness

1 \#queries $\leq|\Pi|$ (whp)
2 Resulting transcript is close to that generated by random input from $\left(g^{n}\right)^{-1}(z)$

Some problems

Maybe doable

■ Lifting for BQP?
$\left[\mathrm{ABG}^{+} 17\right]$
■ Lifting using constant-size gadgets?

Challenges

■ Disprove the log-rank conjecture
■ Explicit lower bounds against $\mathrm{PH}^{c c}$? Or even $S Z K^{c c} \subseteq A^{c c} \subseteq \Pi_{2} P^{c c}$?

Maybe doable

■ Lifting for BQP?
$\left[\mathrm{ABG}^{+} 17\right]$
■ Lifting using constant-size gadgets?

Challenges

■ Disprove the log-rank conjecture
■ Explicit lower bounds against $\mathrm{PH}^{c c}$? Or even $S Z K^{c c} \subseteq A^{c c} \subseteq \Pi_{2} \mathrm{P}^{\mathrm{Cc}}$? $[B C H T V 16]$

Cheers!

