

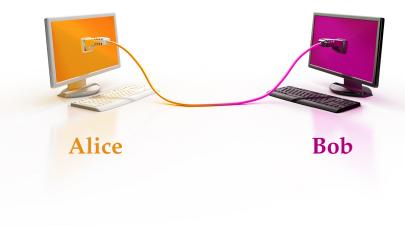
Communication Lower Bounds via Critical Block Sensitivity

<u>Mika Göös</u> & Toniann Pitassi University of Toronto

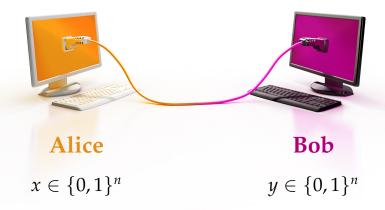
Göös & Pitassi (Univ. of Toronto)

Communication Lower Bounds

[Yao, STOC'79]



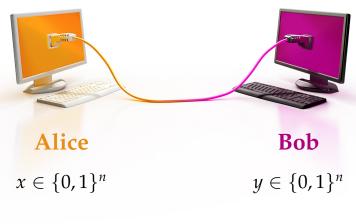
[Yao, STOC'79]



Göös & Pitassi (Univ. of Toronto)

Communication Lower Bounds

[Yao, STOC'79]

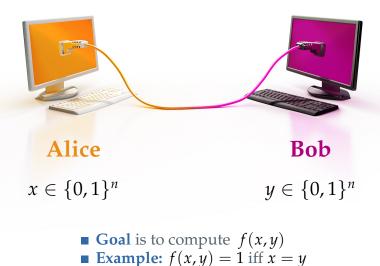


Goal is to compute f(x, y)

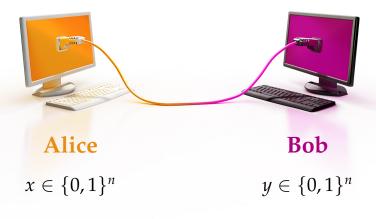
Göös & Pitassi (Univ. of Toronto)

Communication Lower Bounds

[Yao, STOC'79]



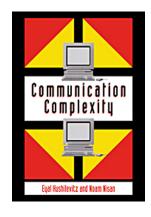
[Yao, STOC'79]



• **Comm. complexity of** *f* is the least amount of communication required to compute *f*

Göös & Pitassi (Univ. of Toronto)

Communication Lower Bounds



1997 100%

Applications

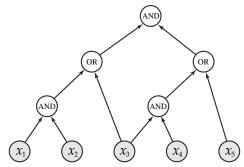
- Distributed computations (duh)
- 2 Combinatorics
- 3 Circuit complexity (KW games)
- 4 Proof complexity (+ SAT algorithms)
- Time-space tradeoffs for Turing machines
- 6 Extended formulations for LPs
- Streaming algorithms
- 8 Property testing
- 9 Privacy
- 10 etc...

Applications

- Distributed computations (duh)
- 2 Combinatorics
- 3 Circuit complexity (KW games)
- 4 Proof complexity (+ SAT algorithms)
- 5 Time–space tradeoffs for Turing machines
- 6 Extended formulations for LPs
- 7 Streaming algorithms
- 8 Property testing
- 9 Privacy
- 10 etc...

Our results: Applications

1 Monotone circuit depth. We exhibit an *explicit* (i.e., in **NP**) monotone function on *n* variables whose monotone circuits require depth $\Omega(n/\log n)$; previous best $\Omega(\sqrt{n})$ by Raz & Wigderson (JACM'92)



Our results: Applications

1 Monotone circuit depth. We exhibit an *explicit* (i.e., in **NP**) monotone function on *n* variables whose monotone circuits require depth $\Omega(n/\log n)$; previous best $\Omega(\sqrt{n})$ by Raz & Wigderson (JACM'92)

We exhibit a function in monotone **P** with monotone depth $\Theta(\sqrt{n})$

These lower bounds hold even if the circuits are allowed to err \implies average-case hierarchy theorem of Filmus et al. (FOCS'13)

Our results: Applications

1 Monotone circuit depth. We exhibit an *explicit* (i.e., in **NP**) monotone function on *n* variables whose monotone circuits require depth $\Omega(n/\log n)$; previous best $\Omega(\sqrt{n})$ by Raz & Wigderson (JACM'92)

We exhibit a function in monotone **P** with monotone depth $\Theta(\sqrt{n})$

These lower bounds hold even if the circuits are allowed to err \implies average-case hierarchy theorem of Filmus et al. (FOCS'13)

Proof complexity. Rank and length–space lower bounds for semi-algebraic proof systems, including Lovász–Schrijver and Lasserre systems. This extends and simplifies Beame et al. (SICOMP'07) and Huynh and Nordström (STOC'12)

Our results: Communication complexity

1 Starting point: Simple proof of the following theorem

Huynh & Nordström (STOC'12)

Let *S* be a *search problem*. The communication complexity of a certain *two-party lift* of *S* is at least the **critical block sensitivity (cbs)** of *S*.

2 New cbs lower bounds: Tseitin and Pebbling problems

Let $S \subseteq \{0,1\}^n \times Q$ be a **search problem**:

- On input $\alpha \in \{0,1\}^n$ the goal is to find a $q \in Q$ s.t. $(\alpha, q) \in S$
- Input α is **critical** if there is a unique feasible solution for α

Let $S \subseteq \{0,1\}^n \times Q$ be a **search problem**:

- On input $\alpha \in \{0,1\}^n$ the goal is to find a $q \in Q$ s.t. $(\alpha, q) \in S$
- Input α is **critical** if there is a unique feasible solution for α

Critical block sensitivity (cbs)

• Let $f \subseteq S$ be a **function** solving *S*

Let $S \subseteq \{0,1\}^n \times Q$ be a **search problem**:

- On input $\alpha \in \{0,1\}^n$ the goal is to find a $q \in Q$ s.t. $(\alpha, q) \in S$
- Input α is **critical** if there is a unique feasible solution for α

Critical block sensitivity (cbs)

- Let $f \subseteq S$ be a **function** solving *S*
- Let $bs(f, \alpha)$ be the **block sensitivity** of f at α

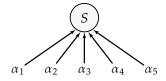
bs (f, α) = max k such that there are disjoint blocks $B_1, \dots, B_k \subseteq [n]$ with $f(\alpha) \neq f(\alpha^{(B_i)})$ for all $i \in [k]$

Let $S \subseteq \{0,1\}^n \times Q$ be a **search problem**:

- On input $\alpha \in \{0,1\}^n$ the goal is to find a $q \in Q$ s.t. $(\alpha, q) \in S$
- Input α is **critical** if there is a unique feasible solution for α

Critical block sensitivity (cbs) ■ Let f ⊆ S be a function solving S ■ Let bs(f, α) be the block sensitivity of f at α cbs(S) := min max bs(f, α)

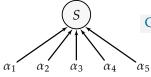
Lifted problems

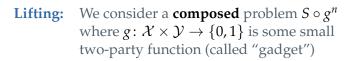


How do we turn $S \subseteq \{0,1\}^n \times Q$ into a **two-party** communication problem?

Göös & Pitassi (Univ. of Toronto)

Lifted problems





Alice holds $x \in \mathcal{X}^n$

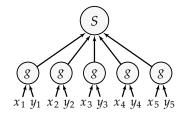
Bob holds $y \in \mathcal{Y}^n$

S

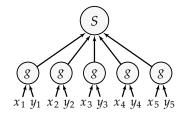
8

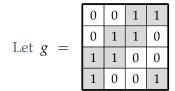
 $x_1 y_1 x_2 y_2 x_3 y_3 x_4 y_4 x_5 y_5$

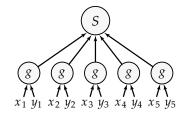
g



Let
$$g = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$





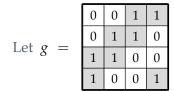


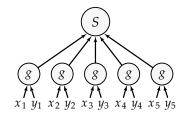
Theorem (Lower bounds via cbs)

Randomised comm. complexity of $S \circ g^n$ is $\Omega(cbs(S))$

Göös & Pitassi (Univ. of Toronto)

Communication Lower Bounds



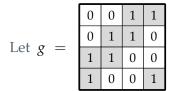


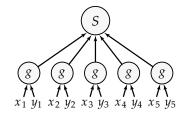
Theorem (Lower bounds via cbs)

Randomised comm. complexity of $S \circ g^n$ is $\Omega(cbs(S))$

Comparison with [Huynh & Nordström, 2012]:

- Slightly different gadgets
- We reduce from set-disjointness; [HN'12] use information theory
- Our proof generalises to multi-party models (NIH, NOF)





Theorem (Lower bounds via cbs)

Randomised comm. complexity of $S \circ g^n$ is $\Omega(cbs(S))$

Proof...

Göös & Pitassi (Univ. of Toronto)

Proof strategy

Proof is by a reduction from **set-disjointness**:

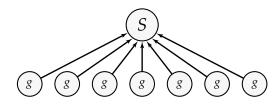
$$\text{DISJ}_{\text{cbs}} \leq S \circ g^n$$

where $DISJ_m$ is defined as follows:

- Alice holds $A \subseteq [m]$
- **Bob** holds $B \subseteq [m]$
- **Goal** is to decide whether $A \cap B = \emptyset$

It is known that $DISJ_m$ requires $\Theta(m)$ bits of communication (even randomised protocols)

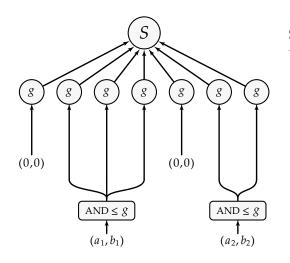
[Zhang, ISAAC'09]



Suppose *S* is a **function** with **2**-sensitive input

$$\alpha = 0\underline{000}0\underline{00}$$

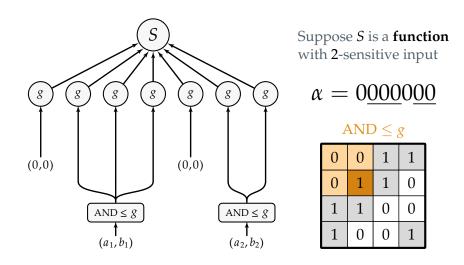
[Zhang, ISAAC'09]



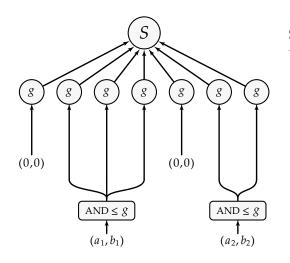
Suppose *S* is a **function** with **2**-sensitive input

$$\alpha = 0\underline{000}0\underline{00}$$

[Zhang, ISAAC'09]



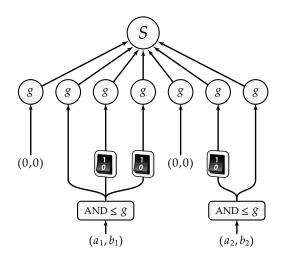
[Zhang, ISAAC'09]



Suppose *S* is a **function** with **2**-sensitive input

$$\alpha = 0\underline{011}0\underline{10}$$

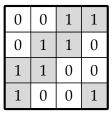
[Zhang, ISAAC'09]

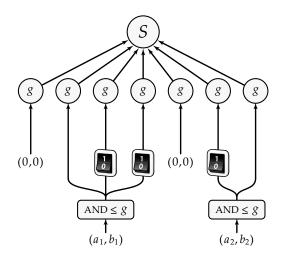


Suppose *S* is a **function** with **2**-sensitive input

$$\alpha = 0\underline{011}0\underline{10}$$

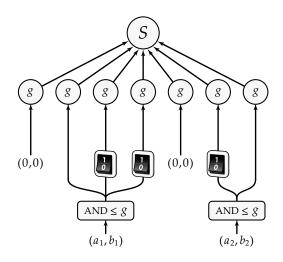
Flippability: $\neg g \leq g$





What if *S* is a **search problem**?

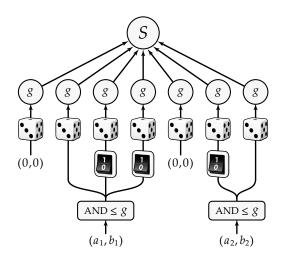
- How do we define $f \subseteq S$?
 - Protocol's output can depend on the *encoding* (x, y) of $\alpha = g^n(x, y)!$



Solution: Consider random encodings!

Define $f(\alpha)$ to be the *most likely* solution output by the protocol on a random encoding of α

Apply a **random-selfreduction** to map any particular encoding (x, y)of $\alpha = g^n(x, y)$ into a random one



Random-self-reduction:

$$(x,y) \in g^{-1}(z)$$

$$\downarrow$$

$$(X,Y) \in_R g^{-1}(z)$$

0	0	1	1
0	1	1	0
1	1	0	0
1	0	0	1

Theorem (Lower bounds via cbs)

Randomised comm. complexity of $S \circ g^n$ is $\Omega(cbs(S))$

Note: Extension to multi-party setting uses **random-selfreducible** multi-party gadgets

Next up:

We need **cbs** lower bounds for interesting search problems Focus of this talk: **Tseitin search problems**

Tseitin contradictions

Let *G* be a **bounded-degree** graph with an **odd** number of nodes

Tseitin contradiction F_G

Variables: x_e for each edge e
Clauses: For each node v,

$$\sum_{e:v \in e} x_e \equiv 1 \pmod{2}$$

Tseitin contradictions

Let *G* be a **bounded-degree** graph with an **odd** number of nodes

Tseitin contradiction *F*_{*G*}

Variables: x_e for each edge e
Clauses: For each node v,

$$\sum_{e:v\in e} x_e \equiv 1 \pmod{2}$$

Canonical search problem

- **Input:** Assignment to the variables of *F*_{*G*}
- Output: Violated clause

Tseitin contradictions

Let *G* be a **bounded-degree** graph with an **odd** number of nodes

Tseitin contradiction F_G

Variables: x_e for each edge e
Clauses: For each node v,

$$\sum_{e:v\in e} x_e \equiv 1 \pmod{2}$$

Canonical search problem

- **Input:** Assignment to the variables of *F*_{*G*}
- Output: Violated clause

If G is an expander...

Known:Deterministic query complexity $\Theta(n)$ [Urq'87]Randomised query complexity $\Omega(n^{1/3})$ [LNNW'95]

We prove: Critical block sensitivity $\Omega(n / \log n)$

Communication Lower Bounds

Tseitin sensitivity

κ -routability

G is κ **-routable** iff there is a set of terminals

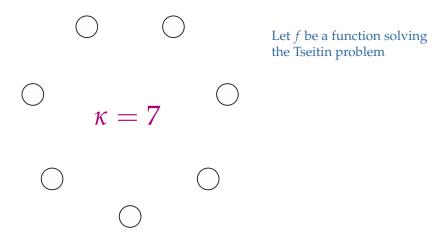
$$T \subseteq V(G), \quad |T| = \kappa,$$

such that for every pairing of the nodes of T there are edge-disjoint paths in G connecting every pair

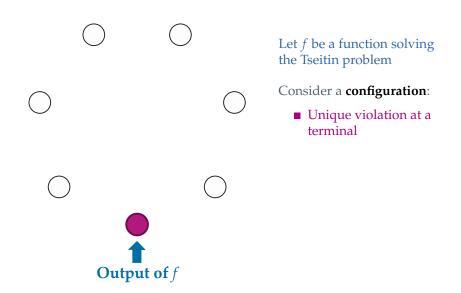
Example: $\kappa = \Theta(n / \log n)$ on an expander

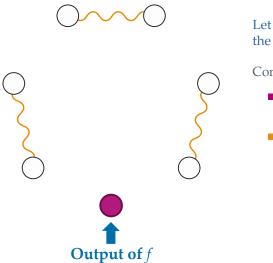
Theorem (Tseitin sensitivity)

 $cbs(Tseitin) = \Omega(\kappa)$



Göös & Pitassi (Univ. of Toronto)

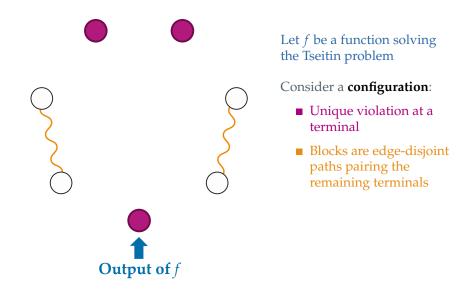


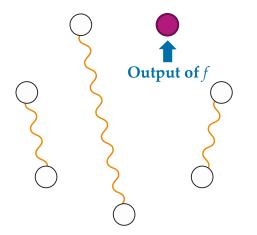


Let *f* be a function solving the Tseitin problem

Consider a **configuration**:

- Unique violation at a terminal
- Blocks are edge-disjoint paths pairing the remaining terminals

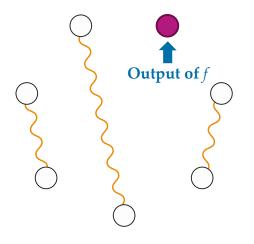




Let *f* be a function solving the Tseitin problem

Consider a **configuration**:

- Unique violation at a terminal
- Blocks are edge-disjoint paths pairing the remaining terminals



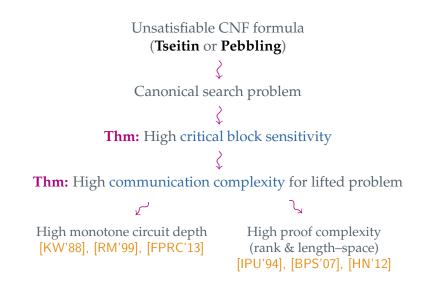
Let *f* be a function solving the Tseitin problem

Consider a **configuration**:

- Unique violation at a terminal
- Blocks are edge-disjoint paths pairing the remaining terminals

Show that a **random config** is sensitive to $\Omega(\kappa)$ blocks in expectation!

Putting everything together



Conjecture

There exists a two-party gadget g such that for all

 $f: \{0,1\}^n \to \{0,1\}$

- **Deterministic** comm. complexity of $f \circ g^n$ ≈ **deterministic** query complexity of f
- Randomised comm. complexity of f ∘ gⁿ
 ≈ randomised query complexity of f

Conjecture

There exists a two-party gadget g such that for all

 $S \subseteq \{0,1\}^n \times Q$

- Deterministic comm. complexity of S ∘ gⁿ
 ≈ deterministic query complexity of S
- Randomised comm. complexity of S ∘ gⁿ
 ≈ randomised query complexity of S

Göös & Pitassi (Univ. of Toronto)

Communication Lower Bounds

13th January 2014 18 / 18