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Göös & Pitassi (Univ. of Toronto) Communication Lower Bounds 13th January 2014 1 / 18



Communication complexity? [Yao, STOC’79]

Alice

x ∈ {0, 1}n

Bob

y ∈ {0, 1}n
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Göös & Pitassi (Univ. of Toronto) Communication Lower Bounds 13th January 2014 2 / 18



Communication complexity? [Yao, STOC’79]

Alice

x ∈ {0, 1}n

Bob

y ∈ {0, 1}n

Goal is to compute f (x, y)

Example: f (x, y) = 1 iff x = y
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Communication complexity? [Yao, STOC’79]

Alice

x ∈ {0, 1}n

Bob

y ∈ {0, 1}n

Comm. complexity of f is the least amount
of communication required to compute f
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Applications

1 Distributed computations (duh)
2 Combinatorics
3 Circuit complexity (KW games)
4 Proof complexity (+ SAT algorithms)
5 Time–space tradeoffs for Turing machines
6 Extended formulations for LPs
7 Streaming algorithms
8 Property testing
9 Privacy

10 etc. . .
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Our results: Applications

AND AND

AND

OR OR

x1 x2 x3 x4 x5

1 Monotone circuit depth. We exhibit an explicit (i.e., in NP)
monotone function on n variables whose monotone circuits
require depth Ω(n/ log n); previous best Ω(

√
n) by Raz &

Wigderson (JACM’92)

We exhibit a function in monotone P with monotone depth Θ(
√

n)

These lower bounds hold even if the circuits are allowed to err
=⇒ average-case hierarchy theorem of Filmus et al. (FOCS’13)

2 Proof complexity. Rank and length–space lower bounds for
semi-algebraic proof systems, including Lovász–Schrijver and
Lasserre systems. This extends and simplifies Beame et al.
(SICOMP’07) and Huynh and Nordström (STOC’12)
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Our results: Communication complexity

1 Starting point: Simple proof of the following theorem

Huynh & Nordström (STOC’12)

Let S be a search problem. The communication com-
plexity of a certain two-party lift of S is at least the
critical block sensitivity (cbs) of S.

2 New cbs lower bounds: Tseitin and Pebbling problems
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Critical block sensitivity [Huynh & Nordström, STOC’12]

Let S ⊆ {0, 1}n ×Q be a search problem:
On input α ∈ {0, 1}n the goal is to find a q ∈ Q s.t. (α, q) ∈ S
Input α is critical if there is a unique feasible solution for α

Critical block sensitivity (cbs)

Let f ⊆ S be a function solving S
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Critical block sensitivity (cbs)

Let f ⊆ S be a function solving S
Let bs( f , α) be the block sensitivity of f at α

bs( f , α) = max k such that there are disjoint blocks
B1, . . . , Bk ⊆ [n]

with f (α) 6= f (α(Bi)) for all i ∈ [k]
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Critical block sensitivity (cbs)

Let f ⊆ S be a function solving S
Let bs( f , α) be the block sensitivity of f at α

cbs(S) := min
f⊆S

max
critical α

bs( f , α)
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Lifted problems

S

α1 α2 α3 α4 α5

How do we turn S ⊆ {0, 1}n ×Q into a
two-party communication problem?
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Lifted problems

S

α1 α2 α3 α4 α5

S

g g g g g

x1 y1 x2 y2 x3 y3 x4 y4 x5 y5

Compose with gn

Lifting: We consider a composed problem S ◦ gn

where g : X ×Y → {0, 1} is some small
two-party function (called “gadget”)

Alice holds x ∈ X n

Bob holds y ∈ Yn
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Lower bounds via cbs

S

g g g g g

x1 y1 x2 y2 x3 y3 x4 y4 x5 y5

Let g =

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

Theorem (Lower bounds via cbs)

Randomised comm. complexity of S ◦ gn is Ω(cbs(S))
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Lower bounds via cbs

S

g g g g g

x1 y1 x2 y2 x3 y3 x4 y4 x5 y5

Let g =

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

Theorem (Lower bounds via cbs)

Randomised comm. complexity of S ◦ gn is Ω(cbs(S))

Comparison with [Huynh & Nordström, 2012]:
Slightly different gadgets
We reduce from set-disjointness; [HN’12] use information theory
Our proof generalises to multi-party models (NIH, NOF)
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Lower bounds via cbs

S

g g g g g

x1 y1 x2 y2 x3 y3 x4 y4 x5 y5

Let g =

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

Theorem (Lower bounds via cbs)

Randomised comm. complexity of S ◦ gn is Ω(cbs(S))

Proof. . .
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Proof strategy

Proof is by a reduction from set-disjointness:

DISJcbs ≤ S ◦ gn

where DISJm is defined as follows:

Alice holds A ⊆ [m]
Bob holds B ⊆ [m]
Goal is to decide whether A ∩ B = ∅

It is known that DISJm requires Θ(m) bits of
communication (even randomised protocols)
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Reduction DISJcbs ≤ S ◦ gn
[Zhang, ISAAC’09]

g g g g g g g

S Suppose S is a function
with 2-sensitive input

α = 0000000
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(a1, b1) (a2, b2)

AND ≤ g AND ≤ g

(0,0) (0,0)

g g g g g g g

S Suppose S is a function
with 2-sensitive input

α = 0000000
AND ≤ g
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0 0 1 1
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Reduction DISJcbs ≤ S ◦ gn
[Zhang, ISAAC’09]

(a1, b1) (a2, b2)

AND ≤ g AND ≤ g

(0,0) (0,0)

g g g g g g g

S Suppose S is a function
with 2-sensitive input

α = 0011010
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Reduction DISJcbs ≤ S ◦ gn
[Zhang, ISAAC’09]

(a1, b1) (a2, b2)

AND ≤ g AND ≤ g

(0,0) (0,0)

g g g g g g g

S Suppose S is a function
with 2-sensitive input

α = 0011010
Flippability:
¬g ≤ g

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1
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Reduction DISJcbs ≤ S ◦ gn

[Zhang, ISAAC’09]

(a1, b1) (a2, b2)

AND ≤ g AND ≤ g

(0,0) (0,0)

g g g g g g g

S

Suppose S is a function
with 2-sensitive input

α = 0011010

What if S is a
search problem?

How do we define
f ⊆ S?

Protocol’s output
can depend on the
encoding (x, y) of
α = gn(x, y)!
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Reduction DISJcbs ≤ S ◦ gn

[Zhang, ISAAC’09]

(a1, b1) (a2, b2)

AND ≤ g AND ≤ g

(0,0) (0,0)

g g g g g g g

S

Suppose S is a function
with 2-sensitive input

α = 0011010

Solution: Consider
random encodings!

Define f (α) to be the most
likely solution output by
the protocol on a random
encoding of α

Apply a random-self-
reduction to map any
particular encoding (x, y)
of α = gn(x, y) into a
random one
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Reduction DISJcbs ≤ S ◦ gn

[Zhang, ISAAC’09]

(a1, b1) (a2, b2)

AND ≤ g AND ≤ g

(0,0) (0,0)

g g g g g g g

S

Suppose S is a function
with 2-sensitive input

α = 0011010

Random-self-reduction:

(x, y) ∈ g−1(z)7→

(X, Y) ∈R g−1(z)

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1
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Proof complete!

Theorem (Lower bounds via cbs)

Randomised comm. complexity of S ◦ gn is Ω(cbs(S))

Note: Extension to multi-party setting uses random-self-
reducible multi-party gadgets

Next up:
We need cbs lower bounds for interesting search problems
Focus of this talk: Tseitin search problems

Göös & Pitassi (Univ. of Toronto) Communication Lower Bounds 13th January 2014 12 / 18



Tseitin contradictions

Let G be a bounded-degree graph with an odd number of nodes

Tseitin contradiction FG

Variables: xe for each edge e
Clauses: For each node v,

∑
e:v∈e

xe ≡ 1 (mod 2)

Canonical search problem

Input: Assignment to the
variables of FG

Output: Violated clause

If G is an expander. . .

Known: Deterministic query complexity Θ(n) [Urq’87]

Randomised query complexity Ω(n1/3) [LNNW’95]

We prove: Critical block sensitivity Ω(n/ log n)
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Tseitin sensitivity

κ-routability

G is κ-routable iff there is a set of terminals

T ⊆ V(G), |T| = κ,

such that for every pairing of the nodes of T there
are edge-disjoint paths in G connecting every pair

Example: κ = Θ(n/ log n) on an expander

Theorem (Tseitin sensitivity)

cbs(Tseitin) = Ω(κ)
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Tseitin sensitivity: Proof

κ = 7

Let f be a function solving
the Tseitin problem

Consider a configuration:

Unique violation at a
terminal

Blocks are edge-disjoint
paths pairing the
remaining terminals

Show that a random config
is sensitive to Ω(κ) blocks in
expectation!
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Göös & Pitassi (Univ. of Toronto) Communication Lower Bounds 13th January 2014 15 / 18



Tseitin sensitivity: Proof

Output of f

Let f be a function solving
the Tseitin problem

Consider a configuration:

Unique violation at a
terminal

Blocks are edge-disjoint
paths pairing the
remaining terminals

Show that a random config
is sensitive to Ω(κ) blocks in
expectation!
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Putting everything together

Unsatisfiable CNF formula
(Tseitin or Pebbling)

;

Canonical search problem

;

Thm: High critical block sensitivity

;
Thm: High communication complexity for lifted problem

;

High monotone circuit depth
[KW’88], [RM’99], [FPRC’13]

;

High proof complexity
(rank & length–space)

[IPU’94], [BPS’07], [HN’12]
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Open problem

Conjecture

There exists a two-party gadget g such that for all

f : {0, 1}n → {0, 1}

Deterministic comm. complexity of f ◦ gn

≈ deterministic query complexity of f
Randomised comm. complexity of f ◦ gn

≈ randomised query complexity of f
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Göös & Pitassi (Univ. of Toronto) Communication Lower Bounds 13th January 2014 17 / 18



Questions?
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