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Lower Bounds for Local Approximation

We prove: Local algorithms do not need unique IDs
when computing approximations to
graph optimization problems
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Input = Graph G = Communication Network
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“Simple” Graph Problems

Old Classics

1 Independent sets

2 Vertex covers
3 Dominating sets
4 Matchings
5 Edge covers
6 Edge dom. sets
7 Etc. . .
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Local Algorithms

1 Distributed algorithm A
2 Deterministic, synchronous

3 Locality: running time r of A is
independent of n = |G|
may depend on maximum
degree ∆ of G

On bounded degree graphs (∆ = O(1))
running time is a constant:

r ∈N (e.g., r = 3)
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Local Algorithms

Definition:

A : { } → {0, 1}

∆

Output:

Vertex set: Set of vertices v with A(G, v) = 1
Edge set: A(G, v) is a vector of length ∆ indicating which

edges incident to v are included
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Two Network Models
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2

Unique Identifiers Anonymous Networks
with Port Numbering

Each node has a unique
O(log n)-bit label:

V(G) ⊆ {1, 2, . . . , poly(n)}

Node v can refer to its
neighbours via ports
1, 2, . . . , deg(v)
Edges are oriented
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Example: Independent Sets on a Cycle
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ID-model PO-model

[Cole–Vishkin 86, Linial 92]:
Maximal independent set
can be computed in Θ(log∗ n)
rounds

Above PO-network is
fully symmetric
⇒ All nodes give same output
⇒ Empty set is computed!

Göös et al. (HIIT) Local Approximation 2nd April 2012 8 / 19



Example: Independent Sets on a Cycle

5

8

2

3

7

11

5

8

2

3

7

11 12

2
1

2

1

1 2
1

2
1

2

ID-model PO-model

[Cole–Vishkin 86, Linial 92]:
Maximal independent set
can be computed in Θ(log∗ n)
rounds

Above PO-network is
fully symmetric
⇒ All nodes give same output
⇒ Empty set is computed!
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Known Approximation Ratios

ID PO

Max Independent Set ∞ ∞
Max Matching ∞ ∞

Min Vertex Cover 2 2
Min Edge Cover 2 2

Min Dominating Set ∆′ + 1 ∆′ + 1
(∆′ := 2b∆/2c)

Min Edge Dominating Set α 4− 2/∆′

3 ≤ α ≤ 4− 2/∆′ ???
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Our Result (informally)

Main Thm: When Local Algorithms compute
constant factor approximations,

ID = PO
for a general class of graph problems
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Proof!
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OI: Order Invariant Algorithms

[Naor–Stockmeyer 95]:
Ramsey’s theorem implies that local ID-algorithms
can only compare identifiers

ID = OI ?
= PO

Order invariant algorithm A:

Input: Ordered graph (G,≤)
Output: A(G,≤, v) depends only on order type of the

radius-r neighbourhood of v
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Göös et al. (HIIT) Local Approximation 2nd April 2012 12 / 19



Example: Ordered Cycle

On a large enough cycle

(1− ε)-fraction
of neighbourhoods are
isomorphic

OI-algorithm outputs the
same almost everywhere!
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Two Advantages of OI over PO
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?
=

1. Global linear order vs. Local port numbering

Linear order introduces symmetry breaking
Main challenge: How to control this?

2. PO-algorithms cannot detect small cycles

This disadvantage disappears on high girth graphs
We assume: Feasibility of a solution can be checked
by a PO-algorithm
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Göös et al. (HIIT) Local Approximation 2nd April 2012 14 / 19



Two Advantages of OI over PO

1

1

2

2

2

2

1

1

2 1

1

1

2

2

2 1
1 2

?
=

1. Global linear order vs. Local port numbering

Linear order introduces symmetry breaking
Main challenge: How to control this?

2. PO-algorithms cannot detect small cycles

This disadvantage disappears on high girth graphs

We assume: Feasibility of a solution can be checked
by a PO-algorithm
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Two Advantages of OI over PO

1 + 2 =
Need to understand

linear orders on high girth graphs
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Order Homogeneity

Definition: We say that an ordered graph (G,≤) is

(α, r)-homogeneous
if α-fraction of nodes have isomorphic
radius-r neighbourhoods

Example: Large cycles are (1− ε, r)-homogeneous
(α = 1 not possible)
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Homogeneous High Girth Graphs

1 (1− ε, r)-homogeneous
2 2k-regular
3 Large girth
4 Finite graph

} Main Technical Result:

Graphs (Hε,≤ε) with
properties 1–4 exist

Proof. We use Cayley graphs of soluble groups

F(α, β) Z×Z

Want:

Invariant order
Polynomial growth
Large girth

G1 = Z,
Gi+1 = (Gi × Gi)o Z

Proof of Main Thm:

Form graph products (Hε,≤ε)× G
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Göös et al. (HIIT) Local Approximation 2nd April 2012 17 / 19



Homogeneous High Girth Graphs

1 (1− ε, r)-homogeneous
2 2k-regular
3 Large girth
4 Finite graph

} Main Technical Result:

Graphs (Hε,≤ε) with
properties 1–4 exist

Proof. We use Cayley graphs of soluble groups

F(α, β) Z×Z

Want:

Invariant order
Polynomial growth
[Gromov’s theorem]

Large girth

G1 = Z,
Gi+1 = (Gi × Gi)o Z

Proof of Main Thm:

Form graph products (Hε,≤ε)× G
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Conclusion

Our result:

For Local Approximation,

ID = OI = PO

Open problems:

Planar graphs?
Applications elsewhere—descriptive complexity?
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Cheers!
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