

Lower Bounds for Local Approximation

Mika Göös, Juho Hirvonen \& Jukka Suomela (HIIT)

Lower Bounds for Local Approximation

We prove: Local algorithms do not need unique IDs when computing approximations to graph optimization problems

Input $=$ Graph $\mathcal{G}=$ Communication Network

"Simple" Graph Problems

Old Classics

1 Independent sets

"Simple" Graph Problems

Old Classics
 11 Independent sets

2. Vertex covers

"Simple" Graph Problems

Old Classics

11 Independent sets
[Vertex covers
3 Dominating sets

"Simple" Graph Problems

Old Classics
Old Classics
2 Vertex covers
3 Dominating sets
4 Matching

"Simple" Graph Problems

Old Classics

11 Independent sets
[Vertex covers
[3) Dominating sets
4 Matching
5 Edge covers

"Simple" Graph Problems

Old Classics

1 Independent sets
[Vertex covers
3. Dominating sets

4 Matchings
5 Edge covers
6 Edge dom. sets
7 Etc...

Local Algorithms

1 Distributed algorithm A
2 Deterministic, synchronous

Local Algorithms

1 Distributed algorithm A
2 Deterministic, synchronous

Local Algorithms

1 Distributed algorithm A
2 Deterministic, synchronous

Local Algorithms

1 Distributed algorithm A
2 Deterministic, synchronous

Local Algorithms

1 Distributed algorithm A
2 Deterministic, synchronous

Local Algorithms

1 Distributed algorithm A
2 Deterministic, synchronous
3 Locality: running time r of \mathbf{A} is

- independent of $n=|\mathcal{G}|$
- may depend on maximum degree Δ of \mathcal{G}

Local Algorithms

1 Distributed algorithm A
2 Deterministic, synchronous
3 Locality: running time r of \mathbf{A} is

- independent of $n=|\mathcal{G}|$
- may depend on maximum degree Δ of \mathcal{G}

On bounded degree graphs $(\Delta=O(1))$ running time is a constant:

$$
r \in \mathbb{N} \quad \text { (e.g., } r=3 \text {) }
$$

Local Algorithms

Definition:

Local Algorithms

Definition:

Output:

Vertex set: Set of vertices v with $\mathbf{A}(\mathcal{G}, v)=1$

Local Algorithms

Definition:

Output:

Vertex set: Set of vertices v with $\mathbf{A}(\mathcal{G}, v)=1$
Edge set: $\mathbf{A}(\mathcal{G}, v)$ is a vector of length Δ indicating which edges incident to v are included

Two Network Models

Unique Identifiers

Anonymous Networks
 with Port Numbering

Two Network Models

Unique Identifiers

Anonymous Networks
 with Port Numbering

- Each node has a unique $O(\log n)$-bit label:

$$
V(\mathcal{G}) \subseteq\{1,2, \ldots, \operatorname{poly}(n)\}
$$

Two Network Models

Unique Identifiers

- Each node has a unique $O(\log n)$-bit label:

$$
V(\mathcal{G}) \subseteq\{1,2, \ldots, \operatorname{poly}(n)\}
$$

Anonymous Networks

 with Port Numbering■ Node v can refer to its neighbours via ports $1,2, \ldots, \operatorname{deg}(v)$
■ Edges are oriented

Example: Independent Sets on a Cycle

ID-model

PO-model

Example: Independent Sets on a Cycle

ID-model

PO-model

- [Cole-Vishkin 86, Linial 92]:

Maximal independent set

can be computed in $\Theta\left(\log ^{*} n\right)$
rounds

Example: Independent Sets on a Cycle

ID-model

PO-model

- Above PO-network is fully symmetric

Maximal independent set can be computed in $\Theta\left(\log ^{*} n\right)$ rounds

Example: Independent Sets on a Cycle

ID-model

- [Cole-Vishkin 86, Linial 92]:

Maximal independent set can be computed in $\Theta\left(\log ^{*} n\right)$ rounds

- Above PO-network is fully symmetric
■ \Rightarrow All nodes give same output
PO-model

Example: Independent Sets on a Cycle

ID-model

- Above PO-network is fully symmetric
$■ \quad \Rightarrow$ All nodes give same output
■ \Rightarrow Empty set is computed!

Example: Independent Sets on a Cycle

PO-model

- [Cole-Vishkin 86, Linial 92]:

Maximal independent set can be computed in $\Theta\left(\log ^{*} n\right)$ rounds

■ Above PO-network is fully symmetric
$■ \quad \Rightarrow$ All nodes give same output
■ \Rightarrow Empty set is computed!

Example: Independent Sets on a Cycle

ID-model

■ [Lenzen-Wattenhofer 08, Czygrinow et al. 08]:
MIS cannot be approximated to within a constant factor in $O(1)$ rounds!

PO-model

■ Above PO-network is fully symmetric
$■ \quad \Rightarrow$ All nodes give same output
■ \Rightarrow Empty set is computed!

Example: Independent Sets on a Cycle

Known Approximation Ratios

ID $\quad \mathbf{P O}$

Max Independent Set	∞	∞
Max Matching	∞	∞
Min Vertex Cover	2	2
Min Edge Cover	2	2

Min Dominating Set

$$
\begin{gathered}
\Delta^{\prime}+1 \quad \Delta^{\prime}+1 \\
\left(\Delta^{\prime}:=2\lfloor\Delta / 2\rfloor\right)
\end{gathered}
$$

Known Approximation Ratios

ID $\quad \mathrm{PO}$

Max Independent Set	∞	∞
Max Matching	∞	∞
Min Vertex Cover	2	2
Min Edge Cover	2	2

Min Dominating Set

$$
\begin{gathered}
\Delta^{\prime}+1 \quad \Delta^{\prime}+1 \\
\left(\Delta^{\prime}:=2\lfloor\Delta / 2\rfloor\right)
\end{gathered}
$$

Min Edge Dominating Set $\quad \alpha \quad 4-2 / \Delta^{\prime}$

$$
3 \leq \alpha \leq 4-2 / \Delta^{\prime} \quad ? ? ?
$$

Our Result (informally)

Main Thm: When Local Algorithms compute constant factor approximations,

$$
\mathrm{IID}=\mathrm{PO}
$$

for a general class of graph problems

Proof!

OI: Order Invariant Algorithms

[Naor-Stockmeyer 95]:
Ramsey's theorem implies that local ID-algorithms can only compare identifiers

$$
\mathrm{ID}=\mathrm{OI} \stackrel{?}{=} \mathrm{PO}
$$

OI: Order Invariant Algorithms

[Naor-Stockmeyer 95]:
Ramsey's theorem implies that local ID-algorithms can only compare identifiers

$$
I D=O I=P O
$$

Order invariant algorithm A:
Input: Ordered graph (\mathcal{G}, \leq)
Output: $\mathbf{A}(\mathcal{G}, \leq, v)$ depends only on order type of the radius- r neighbourhood of v

Example: Ordered Cycle

■ On a large enough cycle $(1-\epsilon)$-fraction of neighbourhoods are isomorphic

Example: Ordered Cycle

■ On a large enough cycle $(1-\epsilon)$-fraction of neighbourhoods are isomorphic

■ OI-algorithm outputs the same almost everywhere!

Two Advantages of OI over PO

1.

Global linear order vs. Local port numbering

■ Linear order introduces symmetry breaking
■ Main challenge: How to control this?

Two Advantages of OI over PO

1.

Global linear order vs. Local port numbering

- Linear order introduces symmetry breaking
- Main challenge: How to control this?

2. PO-algorithms cannot detect small cycles

Two Advantages of OI over PO

1.

Global linear order vs. Local port numbering

- Linear order introduces symmetry breaking

■ Main challenge: How to control this?
2. PO-algorithms cannot detect small cycles

Two Advantages of OI over PO

1.

Global linear order vs. Local port numbering

- Linear order introduces symmetry breaking

■ Main challenge: How to control this?
2. PO-algorithms cannot detect small cycles

- This disadvantage disappears on high girth graphs

Two Advantages of OI over PO

1.

Global linear order vs. Local port numbering

- Linear order introduces symmetry breaking

■ Main challenge: How to control this?
2. PO-algorithms cannot detect small cycles

- This disadvantage disappears on high girth graphs

■ We assume: Feasibility of a solution can be checked by a PO-algorithm

Two Advantages of OI over PO

$1+2=$

Need to understand linear orders on high girth graphs

Order Homogeneity

Definition: We say that an ordered graph (\mathcal{G}, \leq) is (α, r)-homogeneous
if α-fraction of nodes have isomorphic radius- r neighbourhoods

Order Homogeneity

Definition: We say that an ordered graph (\mathcal{G}, \leq) is (α, r)-homogeneous
if α-fraction of nodes have isomorphic radius- r neighbourhoods

Example: Large cycles are ($1-\epsilon, r$)-homogeneous ($\alpha=1$ not possible)

Homogeneous High Girth Graphs

1 (1- ϵ, r)-homogeneous
$22 k$-regular
3 Large girth
4 Finite graph

Homogeneous High Girth Graphs

1 (1- $\epsilon, r)$-homogeneous
$22 k$-regular
3 Large girth
4 Finite graph

Homogeneous High Girth Graphs

1 (1- ϵ, r)-homogeneous
$22 k$-regular
3 Large girth
4 Finite graph

Homogeneous High Girth Graphs

11 (1- ϵ, r)-homogeneous
$22 k$-regular
3 Large girth
4 Finite graph

Homogeneous High Girth Graphs

11 (1- ϵ, r)-homogeneous
$22 k$-regular
3 Large girth
4 Finite graph

Homogeneous High Girth Graphs

1 (1- ϵ, r)-homogeneous
$22 k$-regular
3 Large girth
4 Finite graph

Main Technical Result:

Graphs $\left(\mathcal{H}_{\epsilon}, \leq_{\epsilon}\right)$ with properties 1-4 exist

Homogeneous High Girth Graphs

1 (1- ϵ, r)-homogeneous
$22 k$-regular
3 Large girth
4 Finite graph

Main Technical Result:

Graphs $\left(\mathcal{H}_{\epsilon}, \leq_{\epsilon}\right)$ with properties $1-4$ exist

Proof. We use Cayley graphs of soluble groups

Homogeneous High Girth Graphs

1 (1- ϵ, r)-homogeneous
$22 k$-regular
3 Large girth
4 Finite graph

Main Technical Result:

Graphs $\left(\mathcal{H}_{\epsilon}, \leq_{\epsilon}\right)$ with properties 1-4 exist

$F(\alpha, \beta)$

$\mathbb{Z} \times \mathbb{Z}$

Homogeneous High Girth Graphs

1 (1- ϵ, r)-homogeneous
$22 k$-regular
3 Large girth
4 Finite graph

Main Technical Result:

Graphs $\left(\mathcal{H}_{\epsilon}, \leq_{\epsilon}\right)$ with properties 1-4 exist

$F(\alpha, \beta)$

Want:

- Invariant order:

$\mathbb{Z} \times \mathbb{Z}$

Homogeneous High Girth Graphs

1 (1- ϵ, r)-homogeneous
$22 k$-regular
3 Large girth
4 Finite graph

Main Technical Result:

Graphs $\left(\mathcal{H}_{\epsilon}, \leq_{\epsilon}\right)$ with properties $1-4$ exist

$F(\alpha, \beta)$

Want:
■ Invariant order
■ Polynomial growth [Gromov's theorem]
$\mathbb{Z} \times \mathbb{Z}$

Homogeneous High Girth Graphs

1 (1- ϵ, r)-homogeneous
$22 k$-regular
3 Large girth
4 Finite graph

Main Technical Result:

Graphs $\left(\mathcal{H}_{\epsilon}, \leq_{\epsilon}\right)$ with properties $1-4$ exist

$F(\alpha, \beta)$

Want:

- Invariant order
- Polynomial growth
- Large girth [Gamburd et al. 09]
$\mathbb{Z} \times \mathbb{Z}$

Homogeneous High Girth Graphs

1 (1- ϵ, r)-homogeneous
$22 k$-regular
3 Large girth
4 Finite graph

Main Technical Result:

Graphs $\left(\mathcal{H}_{\epsilon}, \leq_{\epsilon}\right)$ with properties $1-4$ exist

$$
F(\alpha, \beta)
$$

Want:

- Invariant order
- Polynomial growth
- Large girth

$$
G_{1}=\mathbb{Z},
$$

$G_{i+1}=\left(G_{i} \times G_{i}\right) \rtimes \mathbb{Z}$

$\mathbb{Z} \times \mathbb{Z}$

Homogeneous High Girth Graphs

1 (1- ϵ, r)-homogeneous
$22 k$-regular
3 Large girth
4 Finite graph

Main Technical Result:

Graphs $\left(\mathcal{H}_{\epsilon}, \leq_{\epsilon}\right)$ with properties $1-4$ exist

> Proof of Main Thm:

Form graph products $\left(\mathcal{H}_{\epsilon}, \leq_{\epsilon}\right) \times \mathcal{G}$

Conclusion

Our result:

\quad For Local Approximation,
$\mathrm{ID}=\mathrm{OI}=\mathbf{P O}$

Open problems:

- Planar graphs?
- Applications elsewhere-descriptive complexity?

Cheers!

