

Lower Bounds *for* Local Approximation

Mika Göös, Juho Hirvonen & Jukka Suomela (HIIT)

Göös et al. (HIIT)

Local Approximation

Lower Bounds for Local Approximation

We prove: Local algorithms do not need *unique IDs* when computing **approximations** to graph optimization problems

Input = Graph G = Communication Network

- Independent sets
- 2 Vertex covers
- 3 Dominating sets
- **4** Matchings

Göös et al. (HIIT)

Local Approximation

2nd April 2012 4 / 19

XI Door

Old Classics

- Independent sets
- 2 Vertex covers
- 3 Dominating sets
- 4 Matchings

Göös et al. (HIIT)

5 Edge covers

Local Approximation

2nd April 2012 4 / 19

Old Classics

Independent sets

 \sim

- 2 Vertex covers
- 3 Dominating sets
- 4 Matchings
- 5 Edge covers
- 6 Edge dom. sets
 - Etc...

Göös et al. (HIIT)

Local Approximation

- 1 Distributed algorithm **A**
- 2 Deterministic, synchronous

- 1 Distributed algorithm **A**
- 2 Deterministic, synchronous

- 1 Distributed algorithm **A**
- 2 Deterministic, synchronous

- 1 Distributed algorithm **A**
- 2 Deterministic, synchronous

- 1 Distributed algorithm **A**
- 2 Deterministic, synchronous

- 1 Distributed algorithm A
- 2 Deterministic, synchronous
- **3 Locality:** running time *r* of **A** is
 - **independent** of $n = |\mathcal{G}|$
 - may depend on maximum degree Δ of \mathcal{G}

- 1 Distributed algorithm A
- 2 Deterministic, synchronous
- **3 Locality:** running time *r* of **A** is
 - independent of $n = |\mathcal{G}|$
 - may depend on maximum degree Δ of \mathcal{G}

On *bounded degree graphs* ($\Delta = O(1)$) running time is a constant:

$$r \in \mathbb{N}$$
 (e.g., $r = 3$)

Definition:

Definition:

Output:

Vertex set: Set of vertices v with $\mathbf{A}(\mathcal{G}, v) = 1$

Göös et al. (HIIT)

Definition:

Output:

Vertex set: Set of vertices v with $\mathbf{A}(\mathcal{G}, v) = 1$ Edge set: $\mathbf{A}(\mathcal{G}, v)$ is a vector of length Δ indicating which edges incident to v are included

Two Network Models

Unique Identifiers

Anonymous Networks with Port Numbering

Two Network Models

Unique Identifiers

Each node has a unique O(log n)-bit label:

 $V(\mathcal{G}) \subseteq \{1, 2, \dots, \operatorname{poly}(n)\}$

Two Network Models

Unique Identifiers

Each node has a unique O(log n)-bit label:

 $V(\mathcal{G}) \subseteq \{1, 2, \dots, \operatorname{poly}(n)\}$

Anonymous Networks with Port Numbering

- Node v can refer to its neighbours via ports 1,2,...,deg(v)
- Edges are oriented

ID-model

PO-model

ID-model

ID-model

 [Cole–Vishkin 86, Linial 92]: Maximal independent set can be computed in Θ(log* n) rounds

Above PO-network is fully symmetric

ID-model

- Above PO-network is fully symmetric
- \Rightarrow All nodes give same output

ID-model

PO-model

- Above PO-network is fully symmetric
- \Rightarrow All nodes give same output
- $\blacksquare \Rightarrow Empty set is computed!$

- Above PO-network is fully symmetric
- \blacksquare \Rightarrow All nodes give same output
- \Rightarrow Empty set is computed!

ID-model

 [Lenzen–Wattenhofer 08, Czygrinow et al. 08]: MIS cannot be approximated to within a constant factor in O(1) rounds! PO-model

- Above PO-network is fully symmetric
- \Rightarrow All nodes give same output
- \Rightarrow Empty set is computed!

 [Lenzen–Wattenhofer 08, Czygrinow et al. 08]: MIS cannot be approximated to within a constant factor in O(1) rounds!

- Above PO-network is fully symmetric
- \Rightarrow All nodes give same output
- \Rightarrow Empty set is computed!

Known Approximation Ratios

	ID	РО	
Max Independent Set	∞	∞	
Max Matching	∞	∞	
Min Vertex Cover	2	2	
Min Edge Cover	2	2	
Min Dominating Set	$\Delta' + 1$	$\Delta' + 1$	
	$(\Delta' :=$	$(\Delta':=2\lfloor\Delta/2\rfloor)$	

Known Approximation Ratios

	ID	PO
Max Independent Set	∞	∞
Max Matching	\sim	\sim
Min Vertex Cover	2	2
Min Edge Cover	2	2
Min Dominating Set	$\Delta' + 1$	$\Delta' + 1$
	$(\Delta' := 2\lfloor \Delta/2 \rfloor)$	
Min Edge Dominating Set	α	$4-2/\Delta'$
$3 < \alpha < 4 - 2/\Lambda'$???	

Main Thm: When Local Algorithms compute constant factor approximations,

ID = PO

for a general class of graph problems

OI: Order Invariant Algorithms

[Naor-Stockmeyer 95]:

Ramsey's theorem implies that **local ID-algorithms** can only **compare** identifiers

OI: Order Invariant Algorithms

[Naor-Stockmeyer 95]:

Ramsey's theorem implies that **local ID-algorithms** can only **compare** identifiers

Order invariant algorithm A:

Input: Ordered graph (\mathcal{G}, \leq) Output: $\mathbf{A}(\mathcal{G}, \leq, v)$ depends only on **order type** of the radius-*r* neighbourhood of *v*

• On a large enough cycle $(1 - \epsilon)$ -fraction

of neighbourhoods are isomorphic

• On a large enough cycle $(1 - \epsilon)$ -fraction

of neighbourhoods are isomorphic

 OI-algorithm outputs the same almost everywhere!

1. Global linear order vs. **Local** port numbering

Linear order introduces symmetry breakingMain challenge: How to control this?

1. Global linear order vs. **Local** port numbering

Linear order introduces symmetry breakingMain challenge: How to control this?

2. PO-algorithms cannot detect small cycles

1. Global linear order vs. **Local** port numbering

Linear order introduces symmetry breakingMain challenge: How to control this?

2. PO-algorithms cannot detect **small cycles**

1. Global linear order vs. Local port numbering

Linear order introduces symmetry breakingMain challenge: How to control this?

2. PO-algorithms cannot detect **small cycles**

This disadvantage disappears on high girth graphs

1. Global linear order vs. Local port numbering

Linear order introduces symmetry breakingMain challenge: How to control this?

2. PO-algorithms cannot detect **small cycles**

This disadvantage disappears on high girth graphs
We assume: Feasibility of a solution can be checked by a PO-algorithm

1 + 2 =

Need to understand linear orders on high girth graphs

Göös et al. (HIIT)

Definition: We say that an **ordered** graph (\mathcal{G} , \leq) is (α, r) **-homogeneous** if α **-fraction** of nodes have isomorphic radius-r neighbourhoods

Definition: We say that an **ordered** graph (\mathcal{G}, \leq) is (α, r) -homogeneous if α -fraction of nodes have isomorphic radius-r neighbourhoods

Example: Large cycles are $(1 - \epsilon, r)$ -homogeneous ($\alpha = 1$ not possible)

- 1 $(1 \epsilon, r)$ -homogeneous
- 2 2*k*-regular
- 3 Large girth
- 4 Finite graph

- 1 $(1 \epsilon, r)$ -homogeneous
- 2 2k-regular
- 3 Large girth
- 4 Finite graph

- (1 ε, r)-homogeneous
 2 2k-regular
- 3 Large girth
- 💶 Finite graph

- 1 $(1 \epsilon, r)$ -homogeneous
- 2 2k-regular
- 3 Large girth
- 4 Finite graph

- 1 $(1 \epsilon, r)$ -homogeneous
- 2 2k-regular
- 3 Large girth
- 4 Finite graph

- 1 $(1 \epsilon, r)$ -homogeneous
- 2 2*k*-regular
- 3 Large girth
- 4 Finite graph

Main Technical Result:

Graphs $(\mathcal{H}_{\epsilon}, \leq_{\epsilon})$ with properties 1–4 exist

- 1 $(1 \epsilon, r)$ -homogeneous
- 2 2*k*-regular
- 3 Large girth
- 4 Finite graph

Main Technical Result:

Graphs $(\mathcal{H}_{\epsilon}, \leq_{\epsilon})$ with properties 1–4 exist

Proof. We use Cayley graphs of soluble groups

- 1 $(1 \epsilon, r)$ -homogeneous
- 2 2*k*-regular
- 3 Large girth
- 4 Finite graph

Main Technical Result:

Graphs $(\mathcal{H}_{\epsilon}, \leq_{\epsilon})$ with properties 1–4 exist

 $\mathbb{Z} \times \mathbb{Z}$

 $F(\alpha, \beta)$

- 1 $(1 \epsilon, r)$ -homogeneous
- 2 2*k*-regular
- 3 Large girth
- 4 Finite graph

Main Technical Result:

Graphs $(\mathcal{H}_{\epsilon}, \leq_{\epsilon})$ with properties 1–4 exist

 $F(\alpha, \beta)$

Want:

Invariant order: $x < y \iff gx < gy$

 $\mathbb{Z} \times \mathbb{Z}$

- 1 $(1 \epsilon, r)$ -homogeneous
- 2 2*k*-regular
- 3 Large girth
- 4 Finite graph

Main Technical Result:

Graphs $(\mathcal{H}_{\epsilon}, \leq_{\epsilon})$ with properties 1–4 exist

 $F(\alpha, \beta)$

Want:

- Invariant order
- Polynomial growth [Gromov's theorem]

 $\mathbb{Z} \times \mathbb{Z}$

- 1 $(1 \epsilon, r)$ -homogeneous
- 2 2*k*-regular
- 3 Large girth
- 4 Finite graph

Main Technical Result:

Graphs $(\mathcal{H}_{\epsilon}, \leq_{\epsilon})$ with properties 1–4 exist

 $F(\alpha, \beta)$

Want:

- Invariant order
- Polynomial growth
- Large girth [Gamburd et al. 09]

 $\mathbb{Z} \times \mathbb{Z}$

- 1 $(1 \epsilon, r)$ -homogeneous
- 2 2*k*-regular
- 3 Large girth
- 4 Finite graph

Main Technical Result:

Graphs $(\mathcal{H}_{\epsilon}, \leq_{\epsilon})$ with properties 1–4 exist

 $F(\boldsymbol{\alpha},\boldsymbol{\beta})$

Want:

- Invariant order
- Polynomial growth
- Large girth

 $G_1 = \mathbb{Z}$,

 $\mathbb{Z} \times \mathbb{Z}$

 $G_{i+1} = (G_i \times G_i) \rtimes \mathbb{Z}$

- 1 $(1 \epsilon, r)$ -homogeneous
- 2 2*k*-regular
- 3 Large girth
- 4 Finite graph

Main Technical Result:

Graphs $(\mathcal{H}_{\epsilon}, \leq_{\epsilon})$ with properties 1–4 exist

Proof of Main Thm: Form graph products $(\mathcal{H}_{\epsilon}, \leq_{\epsilon}) \times \mathcal{G}$

Conclusion

Our result:

For Local Approximation, ID = OI = PO

Open problems:

- Planar graphs?
- Applications elsewhere—descriptive complexity?

Cheers!