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Lower Bounds for Local Approximation

Local algorithms do not need unique IDs
when computing approximations to
graph optimization problems
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Local Algorithms

Distributed algorithm A
Deterministic, synchronous
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Local Algorithms

Distributed algorithm A

Deterministic, synchronous

Locality: running time r of A is
independent of n = |G|

may depend on maximum
degree A of G
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Local Algorithms

Distributed algorithm A

Deterministic, synchronous
Locality: running time r of A is

independent of n = |G|
may depend on maximum
degree A of G

On bounded degree graphs (A = O(1))
running time is a constant:

reN (e.g., r=3)
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Local Algorithms

A {5 - 01
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Local Algorithms

A {5 - 01

Set of vertices v with A(G,v) =1
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Local Algorithms

A {5 - oy

Set of vertices v with A(G,v) =1
A(G,v) is a vector of length A indicating which
edges incident to v are included
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Two Network Models

Anonymous Networks
with Port Numbering
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Two Network Models

Unique Identifiers Anonymous Networks
with Port Numbering

m Each node has a unique
O(logn)-bit label:

V(G) C€{1,2,...,poly(n)}

Goos et al. (HIIT) Local Approximation 2nd April 2012 7/19



Two Network Models

Unique Identifiers Anonymous Networks
with Port Numbering
m Each node has a unique m Node v can refer to its
O(log n)-bit label: neighbours via ports

1,2,...,deg(v)
m Edges are oriented

V(G) C€{1,2,...,poly(n)}
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Example: Independent Sets on a Cycle

ID-model PO-model
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©, (3
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Example: Independent Sets on a Cycle

ID-model PO-model

/@’“0
¢ J

m [Cole-Vishkin 86, Linial 92]:
Maximal independent set
can be computed in @(log* n)
rounds
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Example: Independent Sets on a Cycle

ID-model PO-model
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m [Cole-Vishkin 86, Linial 92]: m Above PO-network is
Maximal independent set fully symmetric
can be computed in ©(log" n) m = All nodes give same output
rounds

m = Empty set is computed!
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Example: Independent Sets on a Cycle

ID-model >> PO-model

o in general
© >
@

Y%

m [Cole-Vishkin 86, Linial 92]: m Above PO-network is
Maximal independent set fully symmetric

can be computed in @(log" 7) m = All nodes give same output
rounds

m = Empty set is computed!
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Example: Independent Sets on a Cycle
ID-model PO-model

‘oo

m [Lenzen—Wattenhofer 08, m Above PO-network is
Czygrinow et al. 08]: fully symmetric
MIS cannot be approximated to m = All nodes give same output
within a constant factor in O(1)

m = Empty set is computed!

rounds!
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Example: Independent Sets on a Cycle

ID-model ~~ PO-model

~~
for Local

( : ) 0 Approximation

‘oo

m [Lenzen—Wattenhofer 08, m Above PO-network is
Czygrinow et al. 08]: fully symmetric
MIS cannot be approximated to m = All nodes give same output
within a constant factor in O(1)

m = Empty set is computed!

rounds!
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Known Approximation Ratios

Max Independent Set
Max Matching

Min Vertex Cover
Min Edge Cover

Min Dominating Set
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Known Approximation Ratios

PO
Max Independent Set 00
Max Matching oS
Min Vertex Cover
Min Edge Cover 2
Min Dominating Set A +1
Min Edge Dominating Set 4-2/N

3<au<4-2/N 72
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Our Result (informally)

When Local Algorithms compute
constant factor approximations,

= PO

for a general class of graph problems
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Proof!
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OI: Order Invariant Algorithms

[Naor-Stockmeyer 95]:

Ramsey’s theorem implies that local I1D-algorithms
can only compare identifiers

= 0OI — PO
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OI: Order Invariant Algorithms

[Naor-Stockmeyer 95]:

Ramsey’s theorem implies that local 11D-algorithms
can only compare identifiers

ID =0I—-=PO

Order invariant algorithm A:

Input: Ordered graph (G, <)
Output: A(G, <,v) depends only on order type of the
radius-r neighbourhood of v
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Example: Ordered Cycle
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Example: Ordered Cycle

m On a large enough cycle
\‘ (1 — €)-fraction
) of neighbourhoods are

’ isomorphic
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Example: Ordered Cycle

m On a large enough cycle
(1 — e)-fraction

of neighbourhoods are
isomorphic

m Ol-algorithm outputs the
same almost everywhere!
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Two Advantages of OI over PO

1 o Global linear order vs. Local port numbering

m Linear order introduces symmetry breaking
m Main challenge: How to control this?
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Two Advantages of OI over PO

1 o Global linear order vs. Local port numbering

m Linear order introduces symmetry breaking
m Main challenge: How to control this?

2. PO-algorithms cannot detect small cycles
m This disadvantage disappears on high girth graphs

m We assume: Feasibility of a solution can be checked
by a PO-algorithm
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Two Advantages of OI over PO

1+2=

Need to understand
linear orders on high girth graphs
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Order Homogeneity

We say that an ordered graph (G, <) is
(a, 7)-homogeneous

if a-fraction of nodes have isomorphic
radius-r neighbourhoods
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Order Homogeneity

We say that an ordered graph (G, <) is
(a, 7)-homogeneous

if a-fraction of nodes have isomorphic
radius-r neighbourhoods

Example: Large cycles are (1 — ¢, 7)-homogeneous
(a« = 1 not possible)
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Homogeneous High Girth Graphs

(1 — €, r)-homogeneous
2k-regular
Large girth

Finite graph
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Homogeneous High Girth Graphs

(1 — €, r)-homogeneous Main Technical Result:
2k-regular Graphs (He, <¢) with
Large girth properties exist
Finite graph
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Homogeneous High Girth Graphs

(1 — €, r)-homogeneous Main Technical Result:
2k-regular Graphs (He, <¢) with
Large girth properties exist
Finite graph

Proof. We use Cayley graphs of soluble groups
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Homogeneous High Girth Graphs

(1 — €, r)-homogeneous Main Technical Result:
2k-regular Graphs (H,, <¢) with
Large girth properties 14 exist

Finite graph

?

Z X Z
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Homogeneous High Girth Graphs

(1 — €, r)-homogeneous Main Technical Result:
2k-regular Graphs (H,, <¢) with
Large girth properties 14 exist

Finite graph

Want:

m Invariant order:
x <y &= gx<gy

Z X Z
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Homogeneous High Girth Graphs

(1 — €, r)-homogeneous Main Technical Result:
2k-regular Graphs (H,, <¢) with
Large girth properties 14 exist

Finite graph

Want:

m Invariant order
m Polynomial growth
[Gromov’s theorem ]

Z X Z
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Homogeneous High Girth Graphs

(1 — €, r)-homogeneous Main Technical Result:
2k-regular Graphs (H,, <¢) with
Large girth properties 14 exist

Finite graph

Want:

m Invariant order

m Polynomial growth

m Large girth
[Gamburd et al. 09]

Z X Z
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Homogeneous High Girth Graphs

(1 — €, r)-homogeneous Main Technical Result:
2k-regular Graphs (H,, <¢) with
Large girth properties 14 exist

Finite graph

Want:

m Invariant order
m Polynomial growth
m Large girth

G =72,
F(a, B) Gis1=(GixG)xZ ZxZ
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Homogeneous High Girth Graphs

(1 — €, r)-homogeneous Main Technical Result:
2k-regular Graphs (He, <¢) with
Large girth properties exist
Finite graph

Proof of Main Thm:
Form graph products (He, <¢) X G
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Conclusion

Our result:

For Local Approximation,

ID=0I=PO

Open problems:

m Planar graphs?
m Applications elsewhere—descriptive complexity?
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Cheers!




