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Fig. 1. Three models of distributed computing.

1. INTRODUCTION
We study deterministic distributed graph algorithms under three different assumptions;
see Figure 1 for illustrations.

ID: Networks with unique identifiers. Each node is given a unique O(log n)-bit label.
OI: Order-invariant algorithms. There is a linear order on the nodes.

Equivalently, the nodes have unique labels, but the output of an algorithm is not
allowed to change if we relabel the nodes while preserving the relative order of the
labels.

PO: Anonymous networks with a port numbering and orientation. For each node, there
is a linear order on the incident edges, and for each edge, there is a linear order on
the incident nodes.

Equivalently, a node of degree d can refer to its neighbours by integers 1, 2, . . . , d,
and each edge is oriented so that the endpoints know which of them is the head
and which is the tail.

While unique identifiers are often useful, in this work, we show that they are seldom
needed in local algorithms (constant-time distributed algorithms):

There is a general class of graph problems such that local algorithms in PO are
able to produce as good approximations as local algorithms in OI or ID.

Put succinctly, we prove that ID = OI = PO for local approximation.
Our work provides a new, general technique for proving lower bounds in the field

of distributed computing. Proving tight lower bounds in the ID model is challenging.
However, the PO model is very restricted, and for many graph problems it is fairly easy
to prove tight lower bounds for local algorithms in the PO model. Our work can be used
to amplify such results to obtain the same lower bound in the ID model.

This work also shows that strictly constant-time distributed algorithms are genuinely
different from almost-constant-time algorithms, and this has practical consequences.
At first sight, the difference between distributed algorithms with running times of O(1)
vs. O(log∗ n) is only of theoretical interest—in practice, both algorithms are fast for any
reasonable value of n. However, our work shows that O(1)-time algorithms admit a
simple implementation: even if the algorithm is originally designed for the ID model,
we can construct an algorithm that solves the same problem without transmitting any
unique identifiers. This is not the case with O(log∗ n)-time algorithms, which typically
make an essential use of the unique identifiers and cannot be used in anonymous
networks at all.

1.1. Graph Problems
Distributed graph algorithms solve problems that are related to the structure of an
unknown communication network. Each node in the network is a computer; each
computer receives a local input, it can exchange messages with adjacent nodes, and
eventually it has to produce a local output. The local outputs constitute a solution of
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Fig. 2. In model ID, the numerical identifiers break symmetry everywhere—for example, in a cycle, a
maximal independent set can be found in O(log∗ n) rounds. In model OI, we can have a cycle with only one
“seam”, and in model PO we can have a completely symmetric cycle.

a graph problem—for example, if we study the dominating set problem, each node
produces one bit of local output, indicating whether it is part of the dominating set. The
running time of an algorithm is the number of synchronous communication rounds (we
will make the model formally precise in Section 2.1).

If we do not restrict the run-time of an algorithm, the models ID, OI, and PO are easy
to separate. Consider, for example, the problem of finding a maximal independent set
(MIS) in an n-cycle. In the ID model the problem can be solved in O(log∗ n) rounds [Cole
and Vishkin 1986], while in the OI model we need Θ(n) rounds, and the problem is not
solvable at all in PO, as we cannot break symmetry—see Figure 2. Hence ID is strictly
stronger than OI, which is strictly stronger than PO.

1.2. Deterministic Local Algorithms
In this work we focus on deterministic local algorithms, i.e., distributed algorithms that
run in a constant number of synchronous communication rounds, independently of the
number of nodes in the network [Naor and Stockmeyer 1995; Suomela 2013b].

With the run-time restricted to a constant, the MIS problem above no longer serves
as an example separating ID, OI, and PO: the MIS problem cannot be solved in constant-
time in any of these models [Linial 1992]. Nevertheless, some artificial problems do
exist that are solvable in OI but not in PO. One example is given by Mayer et al. [1995,
§7], and more examples can be derived from the fact that PO-algorithms cannot detect
small cycles in the network, by definition (see Section 2.5).

However, there has been a conspicuous lack of natural graph problems that would
separate ID, OI, and PO from the perspective of local algorithms. In fact, as we discuss
next, there are results that show that many natural problems that can be solved with a
local algorithm in ID also admit a local algorithm in OI or PO.

1.3. LCL Problems
The seminal paper by Naor and Stockmeyer [1995] studies so-called locally checkable
labellings, or LCL problems for short, that include problems such as graph colouring
and maximal matchings on bounded-degree graphs. In particular, the authors show
that local algorithms in ID and OI are indeed equally expressive among LCL problems.

The followup work by Mayer et al. [1995] hints of a stronger property—some problems
that admit local algorithms in ID have also local algorithms in PO:

— Weak 2-colouring is an LCL problem that can be solved (in certain graph families) with
a local algorithm in the ID model [Naor and Stockmeyer 1995]. It turns out that this
problem can be solved in constant time in the PO model as well [Mayer et al. 1995].
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As we will see in the following sections, we can find many similar examples also outside
the class of LCL problems.

1.4. Global Optimisation vs. Local Approximation
Most of the classical graph problems that are studied in the field of distributed com-
puting are optimisation problems. These problems go beyond local checkability: we are
not only producing a feasible solution—which is an LCL problem—but preferably one
that has a small cost—which is a global problem. Given that many graph optimisation
problems are hard to solve exactly even in the centralised setting, the best we can hope
to achieve in the distributed setting is an approximation of the global optimum.

As was shown by Kuhn et al. [2004], few graphs problems admit constant-time
constant-factor approximation algorithms on general graphs. Therefore the study of
local algorithms has focused on specific graph families, in particular on bounded-degree
graphs. We follow this practice throughout this work. More precisely, we assume that
there is a known constant ∆ such that the degree of any node in any graph that we may
encounter is at most ∆, and we are interested in deterministic algorithms that have a
running time that may depend on ∆ but is independent of the number of nodes in the
network.

In this setting, we have a wide selection of tight results on the local approximability—
and surprisingly the best possible approximation ratios are very similar in ID, OI, and
PO. For example, the following hold for any given ∆ ≥ 2 and ε > 0; here we use the
shorthand notation ∆′ = 2b∆/2c:

— Minimum vertex cover can be approximated to within factor 2 in each of these models
[Åstrand et al. 2009; Åstrand and Suomela 2010]. This is tight: (2− ε)-approximation
is not possible in any of these models [Czygrinow et al. 2008; Lenzen and Wattenhofer
2008; Suomela 2013b].

— Minimum edge cover can be approximated to within factor 2 in each of these models
[Suomela 2013b]. This is tight: (2− ε)-approximation is not possible in any of these
models [Czygrinow et al. 2008; Lenzen and Wattenhofer 2008; Suomela 2013b].

— Minimum dominating set can be approximated to within factor ∆′ + 1 in each of these
models [Åstrand et al. 2010]. This is tight: (∆′ + 1− ε)-approximation is not possible
in any of these models [Czygrinow et al. 2008; Lenzen and Wattenhofer 2008; Suomela
2013b].

— Maximum independent set cannot be approximated to within any constant factor in
any of these models [Czygrinow et al. 2008; Lenzen and Wattenhofer 2008].

— Maximum matching cannot be approximated to within any constant factor in any of
these models [Czygrinow et al. 2008; Lenzen and Wattenhofer 2008].

1.5. State of the Art
This phenomenon has not been fully understood: while there are many problems with
identical approximability results for ID, OI, and PO, it has not been known whether
these are examples of a more general principle or merely isolated coincidences. In fact,
for some problems, tight approximability results have been lacking for ID and OI, even
though tight results are known for PO:

— Minimum edge dominating set can be approximated to within factor 4− 2/∆′ in each
of these models [Suomela 2010]. This is tight for PO but only near-tight for ID and OI:
(4− 2/∆′ − ε)-approximation is not possible in PO [Suomela 2010], and (3− ε)-approx-
imation is not possible in ID and OI [Czygrinow et al. 2008; Lenzen and Wattenhofer
2008; Suomela 2013b].
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In this work we prove a theorem unifying all of the above observations—they are
indeed examples of a general principle. As a simple application of our result, we settle
the local approximability of the minimum edge dominating set problem by lifting the
existing lower bound from PO to ID and OI.

1.6. Main Result
We prove that—under some mild assumptions—the best achievable local approximation
ratios agree across our three models ID, OI, and PO. Before we state this result precisely,
we introduce and recall some terminology.

Simple graph problems. A simple graph problem Π is an optimisation problem in
which a feasible solution is a subset of nodes or a subset of edges, and the goal is to either
minimise or maximise the size of a feasible solution. We say that Π is a PO-checkable
graph problem if there is a local PO-algorithm A that recognises a feasible solution.
That is, A(G, X, v) = 1 for all nodes v ∈ V (G) if X is a feasible solution of problem Π
in graph G, and A(G, X, v) = 0 for some node v ∈ V (G) otherwise—here A(G, X, v) is
the output of a node v if we run algorithm A on graph G and the local inputs form
an encoding of X (see Section 2). In particular, a PO-checkable problem is also an LCL
problem.

The definition of a simple PO-checkable problem may seem somewhat artificial.
However, it is easy to verify that numerous classical graph problems are PO-checkable.

Example 1.1. Minimum vertex cover, minimum edge covers, maximum matching,
maximum independent set, minimum dominating sets, and minimum edge dominating
set are simple PO-checkable graph problems.

Graph lifts. Let ϕ : V (H)→ V (G) be an onto graph homomorphism from graph H to
graph G. If ϕ preserves vertex degrees, i.e., degH(v) = degG(ϕ(v)), then ϕ is called a
covering map, and H is said to be a lift of G. The fibre of v ∈ V (G) is the set ϕ−1(v) of
pre-images of v. We usually consider l-lifts that have fibres of the same cardinality l;
any connected lift H of G is an l-lift for some l. See Figure 3 for an illustration.

Let F be a family of graphs. We say that F is closed under lifts if G ∈ F implies
H ∈ F for all lifts H of G. A family is closed under connected lifts if G ∈ F implies H ∈ F
whenever H and G are connected graphs and H is a lift of G. Again, the definitions
are a bit technical, but many graph families that have been studied in the context of
distributed algorithms are closed under lifts.

Example 1.2. Bounded-degree graphs, regular graphs, bounded-arboricity graphs,
and cyclic graphs are closed under lifts. The restrictions of these families to connected
graphs are closed under connected lifts.
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Main theorem. We give two versions of our main result. The first version is easier
to state, but the second version is perhaps more interesting, as it lets us derive lower
bounds that hold even if we restrict ourselves to connected graphs.

THEOREM 1.3 (MAIN THEOREM, GENERAL VERSION). Let Π be a simple PO-check-
able graph problem. Assume that F is a family of bounded-degree graphs, and it is
closed under lifts. If there is an ID-algorithm A with run-time r = O(1) that finds an
α-approximation of Π in F , then there is a PO-algorithm B with run-time r that finds
an α-approximation of Π in F .

THEOREM 1.4 (MAIN THEOREM, CONNECTED VERSION). Let Π be a simple PO-
checkable graph problem. Assume that F is a family of connected bounded-degree
graphs, it does not contain any trees, and it is closed under connected lifts. If there is an
ID-algorithm A with run-time r = O(1) that finds an α-approximation of Π in F , then
there is a PO-algorithm B with run-time r that finds an α-approximation of Π in F .

In other words, our main theorems say that in order to show run-time or approxima-
bility lower bounds in the ID model, it suffices to do so in the easy-to-analyse PO model.
Examples 1.1 and 1.2 demonstrate that the result is widely applicable—among others,
it applies to all optimisation problems that we discussed in Sections 1.4 and 1.5. We
refer to Section 6 for a discussion on possible extensions and generalisations.

Remark 1.5. To separate constant-time algorithms and non-constant-time algo-
rithms, we have to consider arbitrarily large instances. In general, we can use lifts to
increase the size of a graph. However, connected lifts of a tree are isomorphic to the
original tree. This is why the statement of Theorem 1.4 requires that F does not contain
any trees. As we will show in the following section, the requirement is harmless in
typical applications of Theorem 1.4. To prove a lower bound, it is sufficient that some
worst-case instances contain some cycles.

1.7. An Application: Edge Dominating Sets
Theorems 1.3 and 1.4 provide us with powerful tools for proving lower-bound results:
we can easily transfer negative results from PO to OI and ID. We demonstrate this by
deriving a new lower bound for the minimum edge dominating set problem.

Recall that an edge dominating set for graph G is a set D of edges such that each edge
of G is in D or adjacent to at least one edge in D. From the perspective of centralised
algorithms, this is equivalent to the problem of finding a minimum maximal matching—
in particular, a minimum maximal matching is a minimum edge dominating set. The
problem is NP-hard [Yannakakis and Gavril 1980] and hard to approximate to within
factor 7/6− ε [Chlebı́k and Chlebı́ková 2006].

Both in a centralised setting and in a distributed setting there is a simple factor-2
approximation algorithm: find any maximal matching. However, this does not result
in a local algorithm, as finding a maximal matching requires Ω(log∗ n) time (even if
∆ = 2); this is a corollary of Linial’s [1992] seminal result.

As we pointed out in Section 1.5, the local approximability of the edge dominating set
problem has been an open question. Now we can settle it as a straightforward corollary
of the main theorem.

THEOREM 1.6. Let ∆ ≥ 2, and let A be a local ID-algorithm that finds an α-approx-
imation of a minimum edge dominating set on connected graphs of maximum degree
∆. Then α ≥ α0, where α0 = 4 − 2/∆′ and ∆′ = 2b∆/2c. This is tight: there is a local
ID-algorithm that finds an α0-approximation.

PROOF. By prior work [Suomela 2010], it is known that there is a connected ∆′-
regular graph G0 such that the approximation factor of any local PO-algorithm on G0 is
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at least α0. Let F0 consist of all connected lifts of G0, and let F consist of all connected
graphs of degree at most ∆. We make the following observations.

(1) We have F0 ⊆ F ; by assumption, A finds an α-approximation in F0.
(2) Family F0 consists of connected graphs of degree at most ∆. As G0 is not a tree,

family F0 does not contain any trees. Moreover, F0 is by construction closed under
connected lifts. Hence we can apply the connected version of the main theorem:
there is a local PO-algorithm B that finds an α-approximation in F0.

(3) However, G0 ∈ F0, and hence α ≥ α0.

The matching upper bound is presented in prior work [Suomela 2010].

1.8. Overview of Proof
Roughly speaking, the proof of the main theorem consists of showing that, in the worst
case, an input graph G can be assigned unique identifiers in a way that reveals virtually
no additional symmetry breaking information to that already contained in the PO-
structure of G. Here, OI will serve as an intermediate model that splits up our proof of
ID = PO into two steps: OI = PO and ID = OI.

The first part of our proof introduces new techniques:

OI = PO. In Section 3, we introduce tools to control the order structure of a local
neighbourhood in the OI model. For each input graph G ∈ F we construct a high-
girth lift Gε of G and a linear order <ε on the nodes of Gε such that there is a
near-perfect correspondence between the ordered neighbourhoods of (Gε, <ε) and
the port-numbered neighbourhoods of Gε.

In Section 4.1, we use this correspondence to prove that for any OI-algorithm A
there is a PO-algorithm B that can simulate A on at least a 1 − ε fraction of the
nodes of Gε. Hence, the algorithms A and B produce almost the same solutions
on the lift Gε. From this we deduce that B produces a good approximation on the
original graph G, as the output of any PO-algorithm is invariant under lifts.

For example, if G was a directed cycle the construction would be standard [Czygrinow
et al. 2008]: the lift Gε would simply be a long cycle, and <ε would order the nodes along
the cycle. Moreover, there would be only one “seam” in (Gε, <ε) that could potentially
help A in comparison with B, but only an ε fraction of the nodes are near the seam.

More generally, we give a construction that works for any G. Our main technical tool is
the construction of homogeneous graphs. Homogeneous graphs are regular graphs with
a linear order that is useless from the perspective of OI-algorithms: for a 1− ε fraction
of nodes, the local neighbourhoods are isomorphic. Homogeneous graphs trivially exist;
however, our proof calls for homogeneous graphs of large degree and large girth (i.e.,
there are no short cycles—the graph is locally tree-like). In Section 5 we use an algebraic
construction to prove that such graphs exist.

The second part of our proof is based on existing techniques:

ID = OI. In Section 4.2, we apply Ramsey’s theorem to force an ID-algorithm into
producing an output that depends only on the relative order of the identifiers. This
extends the methods of Naor and Stockmeyer [1995] and Czygrinow et al. [2008].

2. THREE MODELS OF DISTRIBUTED COMPUTING
In this section we make precise the notion of a local algorithm in each of the models ID,
OI, and PO. First, we discuss the properties common to all the models.
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2.1. General Setting
We start by fixing an input graph family F where every G = (V (G), E(G)) ∈ F has
maximum degree at most some constant ∆ ∈ N. We consider distributed algorithms A
that operate on graphs in F .

We denote by A(G, v) ∈ Ω the output of A on a node v ∈ V (G). Here, Ω is a finite set of
possible outputs of A in F . If the solutions to Π are sets of vertices, we take Ω = {0, 1}
so that the solution produced by A on G, denoted A(G) ⊆ V (G), is the set of nodes v
with A(G, v) = 1. Similarly, if the solutions to Π are sets of edges, we take Ω = {0, 1}∆
so that the ith component of the vector A(G, v) indicates whether the ith edge incident
to v is included in the solution A(G) ⊆ E(G).

2.2. Locality
A local algorithm A is characterised by the fact that its running time r ∈ N is a constant.
This means that a node v ∈ V (G) can only receive messages from nodes within distance
r in G, i.e., from nodes in the radius-r ball

BG(v, r) :=
{
u ∈ V (G) : distG(v, u) ≤ r

}
.

Let τ(G, v) denote the radius-r neighbourhood of v in G. That is, τ(G, v) is the restriction
of the structure (G, v) to the vertices BG(v, r); in symbols, τ(G, v) := (G, v) � BG(v, r).
The output of a local algorithm is limited to be a function of the data τ(G, v) in that

A(G, v) = A(τ(G, v)). (1)

Conversely, any function A satisfying (1) is a local ID-algorithm. The models OI and PO,
by contrast, impose further restrictions on this function.

Remark 2.1. In general, τ(G, v) could contain edges that have both endpoints at
distance precisely r from v. However, in our proof we will construct graphs of girth at
least 2r + 2, and hence there are no such edges.

2.3. Model ID
We follow the convention that the vertices have unique O(log n)-bit labels, i.e., an
instance G ∈ F of order n = |G| has V (G) ⊆ {1, 2, . . . ,poly(n)} where by poly(n) we
denote some fixed polynomial function of n; our presentation assumes poly(n)� n.

2.4. Model OI

Local OI-algorithms A do not directly use the numerical values of the identifiers but only
their relative order. To make this notion explicit, let the vertices of G ∈ F be linearly
ordered by <, and call (G, <) an ordered graph. Denote by τ(G, <, v) the restriction of the
structure (G, <, v) to the radius-r ball BG(v, r), i.e., in symbols, τ(G, <, v) := (G, <, v) �
BG(v, r). Then, the output A(G, <, v) depends only on the isomorphism type of τ(G, <, v),
so that if τ(G, <, v) ∼= τ(G′, <′, v′) then A(G, <, v) = A(G′, <′, v′).

2.5. Model PO
In the PO model the nodes are considered anonymous and only the following node
specific structure is available: a node v can communicate with its neighbours through
ports numbered with 1, 2, . . . ,deg(v), and each communication link has an orientation.

Edge-labelled digraphs. To model the above, we consider L-edge-labelled directed
graphs (or L-digraphs, for short) G = (V (G), E(G), `G), where the edges E(G) ⊆ V (G)×
V (G) are directed and each edge e ∈ E(G) carries a label `G(e) ∈ L. We restrict our
considerations to proper labellings `G : E(G) → L that for each v ∈ V (G) assign the
incoming edges (u, v) ∈ E(G) distinct labels and the outgoing edges (v, w) ∈ E(G)
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distinct labels; we allow `G(u, v) = `G(v, w). We refer to the outgoing edges of a node by
the labels L and to the incoming edges by the formal letters L−1 := {`−1 : ` ∈ L}. In the
context of L-digraphs, covering maps ϕ : V (H) → V (G) are required to preserve edge
labels so that `H(v, u) = `G(ϕ(v), ϕ(u)) for all (v, u) ∈ E(H).

A port numbering on G gives rise to a proper labelling `G(v, u) := (i, j), where u is
the ith neighbour of v, and v is the jth neighbour of u; see Figure 4. We now fix L to
contain every possible edge label that appears when a graph G ∈ F is assigned a port
numbering and an orientation. Note that |L| ≤ ∆2.

Views. The information available to a PO-algorithm computing on a node v ∈ V (G) in
an L-digraph G is usually modelled as follows [Angluin 1980; Yamashita and Kameda
1996; Suomela 2013b]. The view of G from v is an L-edge-labelled rooted (possibly
infinite) directed tree T = T (G, v), where the vertices V (T ) correspond to all non-
backtracking walks on G starting at v; see Figure 4c. Formally, a k-step walk can be
identified with a word of length k in the letters L ∪ L−1. A non-backtracking walk
is a reduced word in which neither ``−1 nor `−1` appear. If w ∈ V (T ) is a walk on G
from v to u, we define ϕ(w) := u. In particular, the root of T is the empty word λ with
ϕ(λ) = v. The directed edges of T (and their labels) are defined in such a way that
ϕ : V (T )→ V (G) becomes a covering map. Namely, w ∈ V (T ) has an out-neighbour w`
for every ` ∈ L such that ϕ(w) has a outgoing edge labelled `.

Local PO-algorithms. The inability of a PO-algorithm B to detect cycles in a graph
is characterised by the fact that B(G, v) = B(T (G, v)). In fact, we define a local PO-
algorithm as a function B satisfying

B(G, v) = B(τ(T (G, v))).

An important consequence of this definition is that the output of a PO-algorithm is
invariant under lifts, i.e., if ϕ : V (H) → V (G) is a covering map of L-digraphs, then
B(H, v) = B(G, ϕ(v)). The intuition is that nodes in a common fibre are always in the
same state during computation as they see the same view.

Notation. The following formalism will become useful. Denote by (T ∗, λ) the complete
L-labelled directed radius-r tree rooted at λ whose vertices V (T ∗) correspond to walks
of length at most r. Every non-leaf vertex in T ∗ has an outgoing edge and an incoming
edge for each ` ∈ L; see Figure 5. The output of B on every graph G ∈ F is completely
determined after specifying its output on the subtrees of (T ∗, λ). More precisely, let W
consist of vertex sets W ⊆ V (T ∗) such that (T ∗, λ) �W = τ(T (G, v)) for some G ∈ F and
v ∈ V (G). Then a function B : W→ Ω defines a PO-algorithm by identifying

B((T ∗, λ) �W ) = B(W ).

Note that (T ∗, λ) is a regular tree: all non-leaf nodes have degree 2|L|. However, the
subtree (T ∗, λ) �W need not be regular.

3. ORDER HOMOGENEITY
In this section we introduce some key concepts that are used in controlling the local
symmetry breaking information that is available to a local OI-algorithm.

3.1. Homogeneous Graphs
In the following, we take the isomorphism type of an r-neighbourhood τ(G, <, v) to be
some canonical representative from its isomorphism class.

Definition 3.1. Let (H, <) be an ordered graph. If there is a set U ⊆ V (H) of size
|U | ≥ α|H| such that the vertices in U have a common r-neighbourhood isomorphism



A:10 M. Göös et al.

(a) (b)

2
1

2
1

2

1 13
(1, 2)

(2, 1)

(1, 2)
(3, 1)

u

a b

λ

c
a

ba c

ba−1

ba−1a−1b

ba−1a−1

ba−1a−1c

a

b

a

c

aa

aab−1

aab−1c

b

c

aab−1a

a

(c)

Fig. 4. (a) A graph G with a port numbering and an orientation. (b) A proper labelling `G that is derived
from the port numbering. We have an L-digraph with L = {a, b, c}, a = (1, 2), b = (2, 1), and c = (3, 1).
(c) The view of G from u is an infinite directed tree T = T (G, v); there is a covering map ϕ from T to G that
preserves adjacencies, orientations, and edge labels. For example, ϕ(λ) = ϕ(aab−1) = u.
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type τ∗, then we call (H, <) an (α, r)-homogeneous graph and τ∗ the associated homo-
geneity type of H.

Homogeneous graphs are useful in fooling OI-algorithms: an (α, r)-homogeneous
graph forces any local OI-algorithm to produce the same output in at least an α fraction
of the nodes in the input graph.

However, there are some limitations to how large α can be. For example, if (G, <)
is a non-empty connected ordered graph, and v and u are its smallest and largest
vertices, the r-neighbourhoods τ(G, <, v) and τ(G, <, u) cannot be isomorphic even when
r = 1. Thus, non-trivial finite graphs are not (1, 1)-homogeneous. Moreover, an ordered
(2k− 1)-regular graph cannot be (α, 1)-homogeneous for any α > 1/2; this is the essence
of the weak 2-colouring algorithm of Naor and Stockmeyer [1995].

3.2. Homogeneous Graphs of Large Girth
As our main technical tool we will use homogeneous graphs of large girth and degree.
That is, for any setting of the parameters ε > 0, r, k, and g we would like to obtain
graphs that satisfy the following properties:

(P1) (1− ε, r)-homogeneous,
(P2) 2k-regular,
(P3) girth at least g,
(P4) finite order.

Note that it is relatively easy to satisfy any three of these properties:

(P1, P2, P3) Infinite 2k-regular trees admit a (1, r)-homogeneous linear order; see Fig-
ure 6a for an example.

(P1, P2, P4) We can construct a sufficiently large k-dimensional toroidal grid graph
(cartesian product of k directed cycles) and order the nodes lexicographi-
cally coordinate-wise; see Figure 6b for an example. However, these graphs
have girth 4 when k ≥ 2.

(P1, P3, P4) A sufficiently large directed cycle is (1− ε, r)-homogeneous and has large
girth. However, all the nodes have degree 2.

(P2, P3, P4) It is well known that regular graphs of arbitrarily high girth exist.

Our construction yields graphs satisfying all four properties simultaneously.

THEOREM 3.2. Let k, r ∈ N. For every ε > 0 there exists a finite 2k-regular (1− ε, r)-
homogeneous connected graph (Hε, <ε) of girth larger than 2r + 1. Furthermore, the
following properties hold:

(1) The homogeneity type τ∗ of (Hε, <ε) does not depend on ε.
(2) The graph Hε and the type τ∗ are k-edge-labelled digraphs.

The proof of Theorem 3.2 involves constructing a homogeneous infinite locally tree-like
graph with modest growth. The growth property allows us to cut it down to finite
size while introducing only some ε-fraction of non-homogenous neighbourhoods. Our
algebraic construction is somewhat technical and so we defer it to Section 5.

In what follows, we apply the homogeneous graphs of Theorem 3.2 to control local
algorithms—no details of the construction are needed in these applications.

3.3. Homogeneous Lifts
We fix some notation towards a proof of the main theorems. By Theorem 3.2 we let
(Hε, <ε), ε > 0, be a family of 2|L|-regular (1− ε, r)-homogeneous connected graphs of
girth larger than 2r + 1 interpreted as L-digraphs. The homogeneity type τ∗ that is
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Fig. 6. (a) A fragment of a 4-regular infinite ordered tree (G, <). The numbering of the nodes indicates a
(1, r)-homogeneous linear order in the neighbourhood of node 27. (b) A 4-regular graph G constructed as
the cartesian product of two directed 6-cycles. We define the ordered graph (G, <) by choosing the linear
order 11 < 12 < · · · < 16 < 21 < 22 < · · · < 66. The radius-1 neighbourhood of node 25 is isomorphic to
the radius-1 neighbourhood of node 42. In general, there are 16 nodes (fraction 4/9 of all nodes) that have
isomorphic radius-1 neighbourhoods; hence (G, <) is (4/9, 1)-homogeneous. It is also (1/9, 2)-homogeneous.

shared by allHε is then of the form τ∗ = (T ∗, <∗, λ), where T ∗ is the complete L-labelled
tree of Section 2.5.

We use the graphs Hε to construct homogeneous lifts of any L-digraph G.

THEOREM 3.3. Let G be an L-digraph. For every ε > 0 there exists a lift (Gε, <Gε) of
G such that a 1− ε fraction of the vertices in (Gε, <Gε) have r-neighbourhoods isomorphic
to a subtree of τ∗ = (T ∗, <∗, λ). Moreover, if G is connected, Gε can be made connected.

PROOF. For brevity, write (C, <C) = (Gε, <Gε) and (H, <H) = (Hε, <ε). Our goal is to
construct (C, <C) as a certain product of (H, <H) and G; see Figure 7. This product is a
modification of the common lift construction of Angluin and Gardiner [1981].

The lift C is defined on the product set V (C) := V (H)×V (G) by matching equi-labelled
edges: the out-neighbours of (h, g) ∈ V (C) are vertices (h′, g′) ∈ V (C) such that

(h, h′) ∈ E(H), (g, g′) ∈ E(G), `H(h, h′) = `G(g, g′).

An edge ((h, g), (h′, g′)) ∈ E(C) inherits the common label `H(h, h′) = `G(g, g′).
The properties of C are related to the properties of G and H as follows.

(1) The projection ϕG : V (C)→ V (G) mapping (h, g) 7→ g is a covering map. This follows
from the fact that each edge incident to g ∈ V (G) is always matched against an edge
of H in the fibre V (H)× {g}.

(2) The projection ϕH : V (C)→ V (H) mapping (h, g) 7→ h is not a covering map unless
G is 2|L|-regular. In any case ϕH is a graph homomorphism, and this implies that C
has girth greater than 2r + 1.
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Fig. 7. Homogeneous lifts. In this example L = |2|, and the two labels are indicated with two different kinds
of arrows. Graph Hε is a homogeneous 2|L|-regular ordered L-digraph with a large girth—in particular, the
local neighbourhood of a node looks like a tree. Graph G is an arbitrary L-digraph, not necessarily ordered.
Their product Gε is a lift of G, but it inherits the desirable properties of Hε: a high girth and a homogeneous
linear order.

Next, we define a partial order <p on V (C) as

v <p u ⇐⇒ ϕH(v) <H ϕH(u).

Note that this definition leaves only pairs of vertices in a common ϕH-fibre incom-
parable. But since H has large girth, none of the incomparable pairs appear in
an r-neighbourhood of C. (To see this, let u and v be two incomparable nodes with
ϕH(u) = ϕH(v) = u′, and consider a path P of length d from u to v in C. The projection
P ′ = ϕH(P ) is a non-backtracking walk of length d from u′ to u′, and we can use P ′ to
construct a cycle of length at most d in H. Hence d > 2r + 1.)

We let <C be any completion of <p into a linear order. The previous discussion implies
that <C satisfies

τ(C, <C , v) = τ(C, <p, v) for all v ∈ V (C).
Let UH ⊆ V (H), |UH| ≥ (1− ε)|H|, be the set of type τ∗ vertices in (H, <H). Set

UC := ϕ−1
H (UH)

so that |UC | ≥ (1 − ε)|C|. Let v ∈ UC. By our definition of <p, projection ϕH maps the
r-neighbourhood τv := τ(C, <C , v) into

τ
(
H, <H, ϕH(v)

) ∼= τ∗

while preserving the order. But because τ∗ is a tree, ϕH must be injective on the vertex
set of τv so that τv is isomorphic to a subtree of τ∗ as required.

Finally, suppose G is connected. Then, by averaging, some connected component of
C will have vertices in UC with density at least 1 − ε. This component satisfies the
theorem.

4. PROOF OF MAIN THEOREM
Next, we use the tools of the previous section to prove Theorems 1.3 and 1.4 (see Sec-
tion 1.6). For clarity of exposition we first prove the theorems in the special case where
A is an OI-algorithm. The subsequent proof for an ID-algorithm A uses a somewhat
technical but well-known Ramsey type argument.
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4.1. Special Case of OI-algorithms
We will prove the general version (Theorem 1.3) and connected version (Theorem 1.4)
simultaneously; for the proof of the connected version it suffices to consider only con-
nected lifts below. In this section, we do not need the assumption that F does not contain
any trees.

THEOREM 4.1 (MAIN THEOREM FOR OI-ALGORITHMS). Let Π be a simple PO-
checkable graph problem. Assume that F is a family of (connected) bounded-degree
graphs, and it is closed under (connected) lifts. If there is an OI-algorithm A with run-
time r = O(1) that finds an α-approximation of Π in F , then there is a PO-algorithm B
with run-time r that finds an α-approximation of Π in F .

PROOF. Suppose A is an OI-algorithm with run-time r that finds an α-approximation
of Π in F . Recall that (T ∗, <∗, λ) is a complete L-labelled homogeneous tree; it only
depends on run-time r and maximum degree ∆. We define the PO-algorithm B : W→ Ω
simply by setting

B(W ) := A
(
(T ∗, <∗, λ) �W

)
.

Now, Theorem 3.3 translates into saying that for every G ∈ F , the new algorithm B
simulates A almost perfectly on the lift Gε ∈ F :

Fact 4.2. A(Gε, <Gε, v) = B(Gε, v) for at least a 1− ε fraction of nodes v ∈ V (Gε).

The claim that B works as expected follows essentially from this fact as we argue next.
For simplicity, we assume the solutions to Π are sets of vertices so that A(G) ⊆ V (G);
solutions that are sets of edges are handled similarly. Fix G ∈ F and let ϕε : V (Gε) →
V (G), ε > 0, be the associated covering maps.

Feasibility. Let us first show that algorithm B finds a feasible solution of Π on G. Let
V be a local PO-algorithm with run-time t ∈ N that verifies the feasibility of a solution
for Π. For ε > 0 sufficiently small, each v ∈ V (G) has a pre-image v′ ∈ ϕ−1

ε (v) such that
A and B agree on the vertices ⋃

v∈V (G)

BGε(v
′, t).

Thus, V accepts the solution B(Gε) on the vertices v′. But because ϕε({v′ : v ∈ V (G)}) =
V (G) it follows that V accepts the solution B(G) = ϕε(B(Gε)) on every node in G.

Approximation. Next, we show that algorithm B finds an α-approximation of Π on G.
We assume Π is a minimisation problem; maximisation problems are handled similarly.
Let X ⊆ V (G) and Xε ⊆ V (Gε) be some optimal solutions of Π.

The solution B(Gε) is a disjoint union of some fibres ϕ−1
ε (v), each fibre comprising of

exactly a 1/|G| fraction of the nodes of Gε. It is useful to express Fact 4.2 fibre-wise as

Fact 4.3. A(Gε, <Gε, u) = B(Gε, u) for at least a (1− ε|G|)-fraction of nodes u ∈ ϕ−1
ε (v).

Thus, for each fibre ϕ−1
ε (v) ⊆ B(Gε), we have that at least a (1 − ε|G|)-fraction of the

nodes ϕ−1
ε (v) are included in A(Gε), too. Summing up over all the fibres in B(Gε), we

get that

|A(Gε)| ≥ (1− ε|G|) · |B(Gε)|.
We can now calculate

|B(G)|
|X|

=
|ϕ−1
ε (B(G))|
|ϕ−1
ε (X)|

≤ |B(Gε)|
|Xε|

≤ (1− ε|G|)−1 · |A(Gε)|
|Xε|

≤ (1− ε|G|)−1 · α,
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where the first equality is true because all fibres have the same size, and the first
inequality follows from ϕ−1

ε (B(G)) = B(Gε) and the fact that ϕ−1
ε (X) is a feasible

solution so that |Xε| ≤ |ϕ−1
ε (X)|. Since the above inequality holds for every ε > 0 we

must have that |B(G)|/|X| ≤ α, as desired.

4.2. General Case of ID-algorithms
Next, we will extend the above proof of to handle the case when A is an ID-algorithm.

To do this we use the Ramsey technique of Naor and Stockmeyer [1995]; see also
Czygrinow et al. [2008]. In this technique the algorithm A is forced into producing an
output that depends only on the relative order of the identifiers—this is an ID = OI type
result—while maintaining the values of the identifiers below poly(n). In our case, all
of this analysis is done on the locally tree-like lifts Gε in which an OI = PO type result
holds as we already established above.

For a reference on Ramsey’s theorem see Graham et al. [1980].

Notation. If (X,<X) and (Y,<Y ) are linearly ordered sets with |X| ≤ |Y |, we write

f : (X,<X) ↪→ (Y,<Y )

for the unique order-preserving injection f : X → Y that maps the ith element of X to
the ith element of Y .

We also write ΩW for the family of functions W→ Ω; recall that each B ∈ ΩW can be
interpreted as a PO-algorithm. We set k := |ΩW| and t := |T ∗|. Also, we denote by N(t)

the subsets of N of size t; every t-subset S ∈ N(t) is ordered by the usual order < on N.

Proof of main theorems. Suppose A is an ID-algorithm with run-time r that finds an
α-approximation of Π in F .

For W ∈W and S ∈ N(t) we let

fW,S : (W,<∗) ↪→ (S,<)

so that the vertex-relabelled tree fW,S((T ∗, λ) �W ) has the |W | smallest numbers in S
as vertices. Define a k-colouring c : N(t) → ΩW by setting

c(S)(W ) := A
(
fW,S

(
(T ∗, λ) �W

))
.

For each m ≥ t we can use Ramsey’s theorem to obtain a number R(m) ≥ m, so that
for every R(m)-set I ⊆ N there exists an m-subset J ⊆ I such that J (t) is monochromatic
under c, i.e., all t-subsets of J have the same colour. In particular, for every interval

I(m, i) :=
[
(i− 1)R(m) + 1, iR(m)

]
, i ≥ 1,

there exist an m-subset J(m, i) ⊆ I(m, i) and a colour Bm,i ∈ ΩW such that c(S) = Bm,i

for all t-subsets S ⊆ J(m, i). Each Bm,i ∈ ΩW can be interpreted as a PO-algorithm.
This construction has the following property.

PROPOSITION 4.4. Suppose m ≥ |Gε|+ t. Algorithms A and Bm,i agree on at least a
1− ε fraction of the vertices in the vertex-relabelled L-digraph fm,i(Gε), where

fm,i : (V (Gε), <Gε) ↪→ (J(m, i), <).

PROOF. By Theorem 3.3, let U ⊆ V (fm,i(Gε)), |U | ≥ (1− ε)|Gε|, be the set of vertices
v with τ(fm,i(Gε), <, v) isomorphic to a subtree of τ∗. In particular, for a fixed v ∈ U we
can choose W ∈W such that

τ(fm,i(Gε), <, v) ∼= (T ∗, <∗, λ) �W.

Now, as m is large, there exists a t-set S ⊆ J(m, i) such that

τ(fm,i(Gε), v) = fW,S((T ∗, λ) �W ).
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Thus, A and Bm,i agree on v by the definition of Bm,i.

For every l ∈ N some algorithm appears with density at least 1/k (i.e., appears at
least l/k times) in the sequence

Bm,1,Bm,2, . . . ,Bm,l.

Hence, let Bm be an algorithm that appears with density at least 1/k among these
sequences for infinitely many l. Let B be an algorithm appearing among the Bm for
infinitely many m. We claim B satisfies Theorems 1.3 and 1.4. In fact, the theorems
follow from the considerations of Section 4.1 when Fact 4.2 is replaced with the following
analogous proposition.

PROPOSITION 4.5. For every Gε there exists an n-node lift H of Gε such that

— V (H) ⊆ {1, 2, . . . ,poly(n)}, and
— A(H, v) = B(H, v) for a 1− ε fraction of nodes v ∈ V (H).

Moreover, if Gε is connected and not a tree, H can be made connected.

PROOF. Let m be such that m ≥ |Gε| + t and B = Bm. For infinitely many l there
exists an l-set I ⊆ [lk] of indices such that B = Bm,i for i ∈ I. Consider the following
l-lift of Gε obtained by taking disjoint unions:

H :=
⋃
i∈I

fm,i(Gε).

Algorithms A and B agree on a 1 − ε fraction of the nodes in H by Proposition 4.4.
Furthermore, we have that

n = |H| = l|Gε| and V (H) ⊆ {1, 2, . . . , lkR(m)}.
Recall from Section 2.3 that we are assuming poly(n)� n, so choosing a large enough l
proves the non-connected version of the claim.

Finally, suppose Gε is connected and not a tree. We may assume that there is an edge
e = (v, u) ∈ E(Gε) so that Gε remains connected when e is removed and that a 1 − ε
fraction of vertices in Gε have r-neighbourhoods not containing e that are isomorphic
into τ∗. NowH above is easily modified into a connected graph by redefining the directed
matching between the fibre {vi}i∈I of v and the fibre {ui}i∈I of u. Namely, let π be a
cyclic permutation on I and set

E′ :=
(
E(H) r {(vi, ui)}i∈I

)
∪ {(vi, uπ(i))}i∈I .

Then H′ := (V (H), E′) is easily seen to be a connected l-lift of Gε satisfying the claim.

Remark 4.6. Above, we assumed that instances G have node identifiers V (G) ⊆
{1, 2, . . . ,poly(n)}, for poly(n)� n. By choosing identifiers more economically as in the
work of Czygrinow et al. [2008] one can show lower bounds for the graph problems in
Sections 1.4 and 1.5 even when V (G) = {1, 2, . . . , n}.

5. CONSTRUCTION OF HOMOGENEOUS GRAPHS OF LARGE GIRTH
In this section we prove Theorem 3.2 (see Section 3.2). Our construction uses Cayley
graphs of semi-direct products of groups. First, we recall the terminology in use here;
for a standard reference on group theory see, e.g., Rotman [1995].

5.1. Group Terminology
Semi-direct products. Let G and H be groups with H acting on G as a group of

automorphisms. We write h · g for the action of h ∈ H on g ∈ G so that the mapping
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g 7→ h · g is an automorphism of G. The semi-direct product GoH is defined to be the
set G×H with the group operation given by (g, h)(g′, h′) := (g(h · g′), hh′).

Cayley graphs. The Cayley graph C(G,S) of a group G with respect to a finite set
S ⊆ G is an S-digraph on the vertex set G such that each g ∈ G has an outgoing edge
(g, gs) labelled s for each s ∈ S. We require that 1 /∈ S so as not to have any self-loops.
We do not require that S is a generating set for G, i.e., the graph C(G,S) need not be
connected.

If ϕ : H → G is an onto group homomorphism and S ⊆ H is a set such that the
mapping ϕ is injective on S ∪ {1}, then ϕ naturally induces a covering map of digraphs
C(H,S) and C(G,ϕ(S)).

5.2. The Construction
Our strategy for constructing a (1− ε, r)-homogeneous graph (H, <) is as follows.

(1) We start with an infinite (1,∞)-homogeneous graph (U , <) of large girth and degree
(recall properties P1, P2, and P3 from Section 3.2).

(2) Then, we delete all but a finite fragment of U to end up with a subgraph H ⊆ U
(thus, making property P4 hold).

In cutting awayH we necessarily introduce r-neighbourhoods that witness the bound-
ary between H and the rest of U . To ensure the (1 − ε, r)-homogeneity of H only an ε
fraction of the nodes in H can lie near this boundary. For example, if U = Tk is the
infinite 2k-regular digraph (corresponding to a Cayley graph of the free group on k
generators) we can never cut away a subgraph H ⊆ Tk without leaving too large a
boundary. This is because Tk is too good an expander: the radius-r balls BTk(v, r) grow
at an exponential rate (the free group has exponential growth). Hence, to implement
our strategy, we should choose U to be a Cayley graph of (a group of) polynomial growth.

The famous characterisation of polynomial growth groups due to Gromov [1981]
narrows our search; we end up choosing as U a Cayley graph of a soluble group that
has an abelian subgroup of finite index. For example, the toroidal graphs (of girth 4)
mentioned in Section 3.2 are finite versions of Cayley graphs of the free abelian groups
Zk. Analogously, we will use the decomposition of our soluble group into cyclic factors to
guarantee the presence of a homogeneous ordering. In addition, to ensure large girth,
our soluble groups must be sufficiently far from being abelian, i.e., they must have large
derived length [Conder et al. 2010].

PROOF OF THEOREM 3.2. Let m ∈ N be an even number. We consider three families
of groups, {Hi}i≥1, {Wi}i≥1, and {Ui}i≥1, that are variations on a common theme. The
families are defined iteratively as follows:

H1 := Zm, W1 := Z2, U1 := Z,
Hi+1 := H2

i o Zm, Wi+1 := W 2
i o Z2, Ui+1 := U2

i o Z.

Here, the cyclic group Zm = {0, 1, . . . ,m− 1} acts on the direct product H2
i = Hi ×Hi by

cyclically permuting the coordinates, i.e., the subgroup 2Zm ≤ Zm acts trivially and the
elements in 1 + 2Zm swap the two coordinates. The groups Z2 and Z act analogously in
the definitions of Wi and Ui.

The underlying sets of the groups Hi, Wi, and Ui consist of d(i)-tuples of elements in
Z, for d(i) = 2i − 1, so that Wi ⊆ Hi ⊆ Ui as sets. Interpreting these tuples as points in
Rd(i) we immediately get a natural embedding of every Cayley graph of these groups in
Rd(i). This geometric intuition will become useful later.

The groupsWi are i-fold iterated regular wreath products of the cyclic group Z2. These
groups have order |Wi| = 2d(i) and they are sometimes called symmetric 2-groups; they
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are isomorphic to the Sylow 2-subgroups of the symmetric group on 2i letters [Rotman
1995, p. 176].

The groups Ui are natural extensions of the groups Wi by the free abelian group of
rank d(i): the mapping ϕi : Ui → Wi that reduces each coordinate modulo 2 is easily
seen to be an onto homomorphism with abelian kernel (2Z)d(i) ∼= Zd(i).

The groups Hi are intermediate between Ui and Wi in that the mapping ψi : Ui → Hi

that reduces each coordinate modulo m is an onto homomorphism, and the mapping
ϕ′i : Hi →Wi that reduces each coordinate modulo 2 is an onto homomorphism.

In summary, the following diagram commutes:

Ui
ψi //

ϕi   

Hi

ϕ′
i

��
Wi

Our goal will be to construct a suitable Cayley graph H of some Hi. We will use the
groups Wi to ensure H has large girth, whereas the groups Ui will guarantee that H
has an almost-everywhere homogeneous linear ordering.

Girth. Gamburd et al. [2009] study the girth of random Cayley graphs and prove, in
particular, that a random k-subset of Wi generates a Cayley graph of large girth with
high probability when i� k is large. We only need the following weaker version of their
result [Gamburd et al. 2009, Theorem 6].

THEOREM 5.1 (GAMBURD ET AL.). Let k, r ∈ N. There exists an i ∈ N and a set
S ⊆Wi, |S| = k, such that the girth of the Cayley graph C(Wi, S) is larger than 2r + 1.

Fix a large enough j ∈ N and a k-set S ⊆Wj so that C(Wj , S) has a girth larger than
2r + 1. Henceforth, we omit the subscript j and write H, W , U , ϕ, ψ and d in place of
Hj , Wj , Uj , ϕj , ψj and d(j). Interpreting S as a set of elements of H and U (so that
ϕ(S) = ψ(S) = S) we construct the Cayley graphs

H := C(H,S), W := C(W,S), and U := C(U, S).

As each of these graphs is a lift ofW , none have cycles of length at most 2r+ 1 and their
r-neighbourhoods are trees.

Linear order. Next, we introduce a left-invariant linear order < on U satisfying

u < v =⇒ wu < wv, for all u, v, w ∈ U.
Such a relation can be defined by specifying a positive cone P ⊆ U of elements that are
greater than the identity 1 = 1U so that

u < v ⇐⇒ 1 < u−1v ⇐⇒ u−1v ∈ P.
A relation < defined this way is automatically left-invariant; it is transitive iff u, v ∈ P
implies uv ∈ P ; and every pair u 6= v is comparable iff for all w 6= 1, either w ∈ P or
w−1 ∈ P . The existence of a P satisfying these conditions follows from the fact that U
is a torsion-free soluble group [e.g., Conrad 1959], but it is easy enough to verify that
setting

P :=
{

(u1, u2, . . . , ui, 0, 0, . . . , 0) ∈ U : 1 ≤ i ≤ d and ui > 0
}

satisfies the required conditions above.
Because U acts (by multiplication on the left) on U as a vertex-transitive group of

graph automorphisms, it follows that the structures (U , <, v), v ∈ U , are pairwise iso-
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morphic. A fortiori, the r-neighbourhoods τ(U , <, v), v ∈ U , are all pairwise isomorphic.
Let τ∗ be this common r-neighbourhood isomorphism type.

Transferring the linear order on U to H. Let V (H) be ordered by restricting the
order < on U to the set V (H) = Zdm underlying the group H. Note that < is not a
left-invariant order on H. (Indeed, no non-trivial finite group can be left-invariantly
ordered.) Nevertheless, we will use the polynomial growth property of U to check that,
as m→∞, almost all v ∈ V (H) have r-neighbourhoods of type τ∗.

The neighbours of a vertex v ∈ V (U) are elements vs where

s ∈ S ∪ S−1 ⊆ [−1, 1]d.

The right multiplication action of s ∈ S ∪ S−1 on v can be described in two steps as
follows: First, the coordinates of s are permuted (as determined by v) to obtain a vector
s′. Then, vs is given as the standard addition of the vectors v and s′ in Zd ⊆ Rd. Hence,
vs ∈ v + [−1, 1]d, and moreover,

BU (v, r) ⊆ v + [−r, r]d. (2)

This means that vertices close to v in the graph U are also close in the associated
geometric Rd-embedding.

Consider the set of inner nodes I := [r, (m − 1) − r]d. Let v ∈ I. By (2), the vertex
set BU (v, r) is contained in Zdm. This implies that the cover map ψ is the identity on
BU (v, r) and consequently the r-neighbourhood τ(H, <, v) contains the ordered tree

τ(U , <, v) ∼= τ∗.

If τ(H, <, v) had any edges in addition to those of τ(U , <, v), this would entail a cycle of
length at most 2r + 1 in H, which is not possible. Thus, τ(H, <, v) ∼= τ∗. The density of
elements in H having r-neighbourhood type τ∗ is therefore at least

|I|
|H|

=
(m− 2r)d

md
≥ 1− ε

for a large m.
Finally, to establish Theorem 3.2 it remains to address H’s connectedness. But if H

is not connected, an averaging argument shows that some connected component must
have the desired density of at least 1− ε of type τ∗ vertices.

6. DISCUSSION
We have shown that, under mild assumptions, deterministic local algorithms do not
benefit from unique identifiers: in order to show run-time or approximability lower
bounds for local algorithms in the ID model, it suffices to do so in the PO model.

To conclude this work, we give some further references to related work and explore
what happens when we step outside our scope of deterministic local algorithms and
simple PO-checkable graph problems.

6.1. Models of Computation: Going Below PO

The ID model was introduced by Linial [1992] and it is commonly known as the LOCAL
model, following the terminology introduced by Peleg [2000]. The OI model was intro-
duced in the context of local algorithms by Naor and Stockmeyer [1995], and the PO
model has been used, e.g., in Mayer et al. [1995].

There are also models of computation that are strictly weaker than PO. The most
widely-studied such example is the port-numbering model (without orientations); let us
call it PN. The concept of a port numbering was introduced by Angluin [1980], albeit in
the context of a different model of computation. Distributed algorithms in the PN model
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have been studied, e.g., by Attiya et al. [1988] and Yamashita and Kameda [1996]. It is
easy to show that our main theorem cannot be extended from the PO model to the PN
model. To see this, consider the following graph family: 3-regular graphs that admit
an edge colouring with three colours. In such a graph we can use the edge colouring
to assign the port numbers so that all local views are isomorphic; in particular, we
cannot produce a nontrivial dominating set. However, in the PO model any orientation
will always break symmetry—we can use the local algorithm by Naor and Stockmeyer
[1995] to find a weak colouring, which allows us to produce a nontrivial dominating set.

The separation of the PO model and the PN model is only the first step in a natural
hierarchy of models that are strictly weaker than PO. We refer to Boldi et al. [1996]
and Yamashita and Kameda [1999] for pioneering work in this area, and to the recent
work by Hella et al. [2012] for a classification of the weak models from the perspective
of local algorithms.

6.2. Running Time: Parameters n and ∆

In the field of distributed algorithms, the running time of an algorithm is typically
analysed in terms of two parameters: n, the number of nodes in the graph, and ∆, the
maximum degree of the graph.

The study of local algorithms—distributed algorithms that have running time in-
dependent of n—was initiated by Naor and Stockmeyer [1995]. The research area
has been very active during the past ten years, and the results that we mentioned in
Section 1.4 are merely a selection of upper and lower bounds related to local algorithms.
For up-to-date information on local algorithms, we refer to the survey [Suomela 2013b]
and its online supplement [Suomela 2013a].

Dependence on n. The requirement that the running time is strictly independent of
n cannot be relaxed too much in our main theorem. As we mentioned in Section 1.1,
the models ID, OI, and PO are easy to separate as soon as we allow a running time of
Θ(log∗ n). With this running time, we can interpret the unique node identifiers in the
ID model as a graph colouring with poly(n) colours, and we can then apply fast colour
reduction algorithms to reduce the colour space, e.g., from poly(n) to poly(∆). For exam-
ple, in the case of a cycle, the colour reduction techniques by Cole and Vishkin [1986]
and Naor and Stockmeyer [1995] can be used to find a 3-colouring in O(log∗ n) rounds,
and once we have a 3-colouring, we can easily find a non-trivial approximation of a
vertex cover, edge cover, independent set, dominating set, matching, or edge dominating
set in constant time. Equally good approximations require linear time in the OI model
and they are not possible at all in the PO model.

There are many Θ(log∗ n)-time algorithms that are based on some variant of the colour
reduction idea. It is an open question whether there is a simple graph problem that
can be solved with a Θ(log∗ n)-time algorithm that is not based on a colour reduction
technique, but nevertheless makes an essential use of the numerical values of the
identifiers.

Dependence on ∆. Prior work that studies the running time of a local algorithm as a
function of ∆ includes the upper and lower bounds by Kuhn et al. [2004; 2006b; 2010].
These bounds on approximation ratios apply to algorithms that have, for example, a
running time sublogarithmic in ∆. There are also recent lower bounds that apply to
algorithms with a running time sublinear in ∆ [Hirvonen and Suomela 2012].

In this work, the equivalence of ID and PO was established via a simulation argument
that preserves the running time of a local algorithm. We hope this opens up a new
avenue for proving run-time lower bounds as a function of ∆ in the standard ID model.
For example, we note that the exact time-complexity of the weak 2-colouring problem is
still open.
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6.3. Beyond Simple Graph Problems
Our work, as well as the prior work by Naor and Stockmeyer [1995], focuses on problems
in which the size of the local output is bounded. To keep the presentation easy to follow,
we focused on simple graph problems in which there is only one bit of output per node
or edge. It is straightforward to generalise the results to cover labellings in which we
have multiple bits of output per node and/or edge; however, the number of bits has to
be bounded in order to apply the Ramsey technique.

This restriction is not merely a proof artefact. The recent work by Hasemann et al.
[2012] gives an example of a natural graph problem—fractional graph colouring—that
admits a local O(1)-approximation algorithm in the ID model but not in the OI or PO
models. The work circumvents the assumptions of our main theorem by exploiting the
fact the local outputs can be arbitrarily long: in the fractional graph colouring problem,
each node produces a schedule that indicates when the node is active, and the schedule
can be as fine-grained as necessary.

While our focus is on optimisation problems, the role of unique identifiers is also
being explored in the context of decision problems. When we study decision problems in
a distributed setting, we say that a local algorithm solves a decision problem Π if each
yes-instance is accepted by all nodes and each no-instance is rejected by at least one
node (recall our definition of a PO-checkable graph problem). Fraigniaud et al. [2012]
study two models, LD and LD∗, which are closely related to the decision versions our
models ID and OI, respectively. Korman et al. show that, in many cases, models LD and
LD∗ turn out to be equally expressive.

6.4. Beyond Lift-closed Families
Our techniques rely extensively on the use of graph lifts; we fooled ID-algorithms by
presenting them with locally tree-like unfoldings of the original input graphs.

However, many interesting graph families are not closed under lifts. Planar graphs
are a case in point: there is a local O(1)-approximation algorithm for the minimum
dominating set problem in the ID and OI models [Czygrinow et al. 2008; Lenzen 2011,
§13], but no such PO-algorithm is known.

Open problem 6.1. Is there a PO-algorithm for computing an O(1)-approximation of
the minimum dominating set problem on planar graphs?

6.5. Determinism vs. Randomness
One direction that we have not discussed at all is the case of randomised algorithms.
It is well-known that equipping each node with a random source strictly increases the
power of local algorithms.

Upper bounds. Many of the lower bounds cited in Section 1.4 do not apply for ran-
domised local algorithms. Non-trivial approximations (in expectation or w.h.p.) can
be achieved for matchings [Wattenhofer and Wattenhofer 2004; Hoepman et al. 2006;
Nguyen and Onak 2008] and independent sets [Czygrinow et al. 2008], while no such
deterministic algorithms exist.

One very general tool in this context is randomised LP rounding [Kuhn 2005; Kuhn
et al. 2006a; Kuhn et al. 2006b; Kuhn and Wattenhofer 2005]. By combining local LP
approximation schemes and randomised LP rounding, we can find, for example, an
O(log ∆)-approximation of a minimum dominating set, beating the Ω(∆) lower bound
for deterministic algorithms.

Lower bounds. In the presence of randomness there is no longer any distinction
between the models ID, OI, and PO, as the random bits can be used to generate unique
identifiers w.h.p. (at least if the nodes know an upper bound on n). However, this simple
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observation does little to help us in understanding the limitations of randomised local
algorithms. In fact, for many problems, tight randomised local approximability bounds
are still missing.

Open problem 6.2. Prove lower bounds against randomised local algorithms on
bounded-degree graphs, e.g., for the problems in Sections 1.4 and 1.5.

There are also graph problems in which randomness does not help at all. Vertex colour-
ing in cycles is one example of such a problem: Naor [1991] generalised Linial’s [1992]
tight lower bound to randomised algorithms. It is also known that any randomised
local algorithm for linear programs can be derandomised: in essence, a deterministic
local algorithm can compute the expected output value of a randomised local algorithm
[Kuhn 2005, §2.7.1].
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HELLA, L., JÄRVISALO, M., KUUSISTO, A., LAURINHARJU, J., LEMPIÄINEN, T., LUOSTO, K., SUOMELA,
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