

Adventures in Monotone Complexity and TFNP

Mika Göös IAS
Pritish Kamath MIT
Robert Robere Rutgers \& IAS
Dmitry Sokolov KTH

Monotone complexity

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Monotone:

$$
x \leq y \Longrightarrow f(x) \leq f(y)
$$

Monotone complexity

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Monotone:

$$
x \leq y \Longrightarrow f(x) \leq f(y)
$$

[Razborov'85]: k-Clique: $\{0,1\}^{\binom{n}{2}} \rightarrow\{0,1\}$ has no small monotone circuits
$\Longrightarrow \mathbf{P} \neq \mathbf{N P}$ in monotone world

Monotone complexity

$$
\begin{aligned}
& f:\{0,1\}^{n} \rightarrow\{0,1\} \\
& \text { Monotone: } \\
& x \leq y \Longrightarrow f(x) \leq f(y) \\
& {[\text { Tardos'88]: }} \\
& \text { TARDOS } \in \mathbf{P}
\end{aligned}
$$

has no small monotone circuits

Monotone complexity

Connections:

1 Communication complexity KW games; communication TFNP

2 Proof complexity
Monotone interpolation
3 Extended formulations
Hrubeš-Razborov
4 Cryptography
Secret sharing

Separation result

Main Theorem

Mon. circuit complexity of XOR-SAT n_{n} is $2^{n^{\Omega(1)}}$

$$
\begin{aligned}
v_{1} \oplus v_{2} \oplus v_{3} & =1 \\
v_{1} \oplus v_{2} \oplus v_{3} & =0 \\
\vdots & \\
v_{n-2} \oplus v_{n-1} \oplus v_{n} & =1
\end{aligned}
$$

Separation result

Main Theorem

Mon. circuit complexity of XOR-SAT n_{n} is $2^{n^{\Omega(1)}}$

$$
\begin{array}{cc}
\underset{\downarrow}{\operatorname{input} x} & \\
\downarrow \mathbf{1} & v_{1} \oplus v_{2} \oplus v_{3}
\end{array}=1
$$

Separation result

Main Theorem

Mon. circuit complexity of XOR-SAT n_{n} is $2^{n^{\Omega(1)}}$
$\underset{\downarrow}{\operatorname{inp}} x$
0

$$
\begin{aligned}
& v_{1} \oplus v_{2} \oplus v_{3}=1 \\
& v_{1} \oplus v_{2} \oplus v_{3}=0
\end{aligned}
$$

:

$$
\mathbf{1} \quad v_{n-2} \oplus v_{n-1} \oplus v_{n}=1
$$

$\operatorname{XOR} \operatorname{SAT}_{n}(x)=1 \Longleftrightarrow x$ is unsatisfiable

Separation result

Main Theorem

Mon. circuit complexity of XOR-SAT n_{n} is $2^{n^{\Omega(1)}}$

Monotone vs. non-monotone separations:

- XOR-SAT $\in \mathbf{N C}^{2}$
- Tardos $\in \mathbf{P}$
- MAtching $\in \mathbf{R N C}^{2}$

[Tardos'88]
[Razborov'85]

Example monotone computation

$$
v_{1} \oplus v_{2}=0 \quad v_{3}=1 \quad v_{1} \oplus v_{3}=1
$$

Example monotone computation

Circuits \leftrightarrow Communication protocols

Karchmer-Wigderson, 1988
Razborov, 1995

Circuit depth [KW'88]

Monotone KW game for monotone $f:\{0,1\}^{n} \rightarrow\{0,1\}$

Alice $\quad x \in f^{-1}(1)$
Bob $y \in f^{-1}(0)$
Output i with $x_{i}>y_{i}$

Circuit depth [KW'88]

Monotone KW game for monotone $f:\{0,1\}^{n} \rightarrow\{0,1\}$

Alice $\quad x \in f^{-1}(1)$
Bob $y \in f^{-1}(0)$
Output i with $x_{i}>y_{i}$

Theorem [KW'88]
Mon. circuit depth of f
$=\mathrm{CC}$ of mKW game

Circuit depth [KW'88]

Circuit depth [KW'88]

Circuit depth [KW'88]

Monotone KW game for monotone $f:\{0,1\}^{n} \rightarrow\{0,1\}$

Alice $\quad x \in f^{-1}(1)$
Bob $y \in f^{-1}(0)$
Output i with $x_{i}>y_{i}$

Theorem [KW'88]
Mon. circuit depth of f
$=\mathrm{CC}$ of mKW game

Circuit depth [KW'88]

Monotone KW game for monotone $f:\{0,1\}^{n} \rightarrow\{0,1\}$

Alice $\quad x \in f^{-1}(1)$
Bob $y \in f^{-1}(0)$
Output i with $x_{i}>y_{i}$

Theorem [KW'88]
Mon. circuit depth of f
$=\mathrm{CC}$ of mKW game

Circuit depth [KW'88]

Monotone KW game for monotone $f:\{0,1\}^{n} \rightarrow\{0,1\}$

Alice $\quad x \in f^{-1}(1)$
Bob $y \in f^{-1}(0)$
Output i with $x_{i}>y_{i}$

Theorem [KW'88]
Mon. circuit depth of f
$=\mathrm{CC}$ of mKW game

Circuit size [R'95]

ILS ${ }^{\text {CC }}$-protocol for $S \subseteq \mathcal{X} \times \mathcal{Y} \times \mathcal{O}$

Defined by $\left(V, \Pi_{v}\right)$ where for $v \in V$$\bigcirc$

Circuit size [R'95]

PLS ${ }^{\text {CC }}$-protocol for $S \subseteq \mathcal{X} \times \mathcal{Y} \times \mathcal{O}$

Defined by $\left(V, \Pi_{v}\right)$ where for $v \in V$

- Protocol $\Pi_{v}(x, y)$ outputs

11 Successor in V
2 Potential in \mathbb{Z}
3 Solution in \mathcal{O}

Circuit size [R'95]

$\mathbb{P L S}^{\text {CC }}$ - protocol for $S \subseteq \mathcal{X} \times \mathcal{Y} \times \mathcal{O}$

Defined by $\left(V, \Pi_{v}\right)$ where for $v \in V$

- Protocol $\Pi_{v}(x, y)$ outputs

1 Successor in V
2 Potential in \mathbb{Z}
3 Solution in \mathcal{O}
Implicitly describes dag $G_{x, y}$ with edges (u, v) s.t.

- u's successor is v
- potential decreases

Circuit size [R'95]

PLS ${ }^{\text {CC }}$ - protocol for $S \subseteq \mathcal{X} \times \mathcal{Y} \times \mathcal{O}$

Defined by $\left(V, \Pi_{v}\right)$ where for $v \in V$

- Protocol $\Pi_{v}(x, y)$ outputs

1 Successor in V
2 Potential in \mathbb{Z}
3 Solution in \mathcal{O}
Implicitly describes dag $G_{x, y}$ with edges (u, v) s.t.

- u's successor is v
- potential decreases

Correct: sinks have solutions for (x, y)

Circuit size [R'95]

PLS ${ }^{\text {CC }}$-protocol for $S \subseteq \mathcal{X} \times \mathcal{Y} \times \mathcal{O}$

Defined by $\left(V, \Pi_{v}\right)$ where for $v \in V$

- Protocol $\Pi_{v}(x, y)$ outputs

1 Successor in V
2 Potential in \mathbb{Z}
3 Solution in \mathcal{O}
Implicitly describes dag $G_{x, y}$ with edges (u, v) s.t.

- u's successor is v
- potential decreases

Correct: sinks have solutions for (x, y)
Cost: $\log |V|+\max _{v}\left|\Pi_{v}\right|$

Circuit size [R'95]

$\mathbb{P L S}^{\text {CC }}$-protocol for $S \subseteq \mathcal{X} \times \mathcal{Y} \times \mathcal{O}$

Defined by $\left(V, \Pi_{v}\right)$ where for $v \in V$

- Protocol $\Pi_{v}(x, y)$ outputs

1 Successor in V
2 Potential in \mathbb{Z}
3. Solution in \mathcal{O}

Implicitly describes dag $G_{x, y}$ with edges (u, v) s.t.

- u's successor is v

■ potential decreases
Correct: sinks have solutions for (x, y)
Cost: $\log |V|+\max _{v}\left|\Pi_{v}\right|$

Circuit size [R'95]

PLS ${ }^{\text {cc }}$-protocol

gate $(x)>\operatorname{gate}(y)>$| fixed |
| ---: |
| (x, y) |

Defined by $\left(V, \Pi_{v}\right)$ where for $v \in V$

- Protocol $\Pi_{v}(x, y)$ outputs

1 Successor in V
2 Potential in \mathbb{Z}
3. Solution in \mathcal{O}

Implicitly describes dag $G_{x, y}$ with edges (u, v) s.t.

- u's successor is v
- potential decreases

Correct: sinks have solutions for (x, y)
Cost: $\log |V|+\max _{v}\left|\Pi_{v}\right|$

Circuit size [R'95]

PLS ${ }^{\text {cC }}$-protocol

Defined by $\left(V, \Pi_{v}\right)$ where for $v \in V$

- Protocol $\Pi_{v}(x, y)$ outputs

1 Successor in V
2 Potential in \mathbb{Z}
3 Solution in \mathcal{O}
Implicitly describes dag $G_{x, y}$ with edges (u, v) s.t.

- u's successor is v
- potential decreases

Correct: sinks have solutions for (x, y)
Cost: $\log |V|+\max _{v}\left|\Pi_{v}\right|$

Circuit size [R'95]

PLS ${ }^{\text {cC }}$-protocol

Defined by $\left(V, \Pi_{v}\right)$ where for $v \in V$

- Protocol $\Pi_{v}(x, y)$ outputs

1 Successor in V
2 Potential in \mathbb{Z}
3 Solution in \mathcal{O}
Implicitly describes dag $G_{x, y}$ with edges (u, v) s.t.

- u's successor is v
- potential decreases

Correct: sinks have solutions for (x, y)
Cost: $\log |V|+\max _{v}\left|\Pi_{v}\right|$

Theorem [R'95]:
$\log \operatorname{monCkt}(f)$
$=\mathbf{P L S}^{\mathrm{cc}}(\operatorname{mKW}(f))$

Query analogue of PLS: Resolution proof system

$\mathrm{PLS}^{\mathrm{dt}}$ and Resolution

Unsat k-CNF formula F

PLS ${ }^{\mathrm{dt}}$ and Resolution

Unsat k-CNF formula F
Search problem $S(F)$:
Input: Assignment $x \in\{0,1\}^{n}$
Output: Clause D with $D(x)=0$

PLS ${ }^{\mathrm{dt}}$ and Resolution

Unsat k-CNF formula F
Search problem $S(F)$:
Input: Assignment $x \in\{0,1\}^{n}$
Output: Clause D with $D(x)=0$
PLS ${ }^{\mathrm{dt}}$-decision tree for $S(F)$
Same as PLS ${ }^{\text {cc }}$-protocol except:

- Vertices have decision trees \mathcal{T}_{v}
- Cost: max height of \mathcal{T}_{v}

PLS ${ }^{\mathrm{dt}}$ and Resolution

Unsat k-CNF formula F
Search problem $S(F)$:
Input: Assignment $x \in\{0,1\}^{n}$
Output: Clause D with $D(x)=0$
PLS ${ }^{\mathrm{dt}}$-decision tree for $S(F)$
Same as PLS ${ }^{\text {cc }}$-protocol except:

- Vertices have decision trees \mathcal{T}_{v}
- Cost: max height of \mathcal{T}_{v}

Resolution width of F $=\mathbf{P L S}^{\mathrm{dt}}(S(F))$

PLS ${ }^{\mathrm{dt}}$ and Resolution

Unsat k-CNF formula F
Search problem $S(F)$:
Input: Assignment $x \in\{0,1\}^{n}$
Output: Clause D with $D(x)=0$
PLS ${ }^{\mathrm{dt}}$-decision tree for $S(F)$
Same as PLS ${ }^{\text {cc }}$-protocol except:

- Vertices have decision trees \mathcal{T}_{v}
- Cost: max height of \mathcal{T}_{v}

Resolution width of F $=\mathbf{P L S}^{\mathrm{dt}}(S(F))$

Query-to-communication lifting

$$
\operatorname{PLS}^{c c}(S(F) \circ g) \quad\left[G G K S^{\prime} 18\right] \quad \operatorname{PLS}^{\mathrm{dt}}(S(F))
$$

Query-to-communication lifting

$$
\operatorname{PLS}^{c \mathrm{c}}(S(F) \circ g) \quad\left[G G K S^{18]} \quad \operatorname{PLS}^{d t}(S(F))\right.
$$

Index gadget $g:[m] \times\{0,1\}^{m} \rightarrow\{0,1\}$ mapping $(x, y) \mapsto y_{x}$

Query-to-communication lifting

$$
\begin{array}{ccc}
\operatorname{PLS}^{c c}(S(F) \circ g) & \stackrel{\left[G G K S^{\prime} 18\right]}{=} & \operatorname{PLS}^{\operatorname{dt}}(S(F)) \\
\mid \wedge & \| \\
\operatorname{PLS}^{c c}(\operatorname{mKW}(f)) & & \text { Resolution width o } \\
\| & & \\
\log \operatorname{monCkt}(f) & &
\end{array}
$$

Query-to-communication lifting

$$
\begin{array}{ccc}
\operatorname{PLS}^{c c}(S(F) \circ g) & {\left[G G \operatorname{KSS}^{\prime} 18\right]} & \operatorname{PLS}^{\mathrm{dt}}(S(F)) \\
\mid \wedge & \| \\
\operatorname{PLS}^{c c}(\operatorname{mKW}(f)) & & \| \\
\| & \text { Resolution width of } F \\
\log \operatorname{monCkt}(f) & & \uparrow \\
\text { XOR-CSP } F
\end{array}
$$

Reduction: $S(F) \circ g \leq m K W($ XOR-SAT $)$
unsat F
Bob
$x \in[m]^{4}$

Alice

\[

\]

Reduction: $S(F) \circ g \leq m K W($ XOR-SAT $)$
unsat F
Bob

\[

\]

1	0	1	0	0	1

$$
\begin{array}{|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & 0 & 0 & 1 \\
\hline
\end{array}
$$

0	0	1	1	0	1

Reduction: $S(F) \circ g \leq m K W($ XOR-SAT $)$
unsat F
Bob
$x \in[m]^{4}$

\in XOR-SAT $^{-1}(1)$

\in XOR-SAT $^{-1}(0)$

Query-to-communication lifting

$$
\begin{gathered}
\operatorname{PLS}^{c \mathrm{C}}(S(F) \circ g) \stackrel{\left[G G K S^{1} 18\right]}{=} \\
\| \\
\operatorname{PLS}^{c c}(\mathrm{mKW}(f)) \\
\| \\
\log \text { monCkt }(f) \\
\downarrow \\
\mathcal{C} \text {-SAT is hard }
\end{gathered}
$$

Total NP Search Problems (TFNP)

Communication TFNP

> $\mathrm{TFNP}^{\mathrm{CC}}=$ Total two-party search problems that admit $\log ^{O(1)}(n)$-cost non-deterministic protocol

> Example: $\quad \mathrm{mKW}(f) \in \mathrm{TFNP}^{c c}$ for every monotone f

Communication TFNP

$\mathrm{TFNP}^{\mathrm{Cc}}=$ Total two-party search problems that admit $\log ^{O(1)}(n)$-cost non-deterministic protocol

Example: $\quad \mathrm{mKW}(f) \in \mathrm{TFNP}^{c c}$ for every monotone f

Converse! $\forall S \in \mathbb{T F N P}^{\mathrm{cc}}$ there is $2^{\log ^{O(1)}(n)}$-bit partial monotone f with $S \leq \operatorname{mKW}(f)$
(Proof: reduce to set-disjointness + flip Bob's bits)

Communication TFNP - What we know

