Concretely efficient Computational Integrity (CI) from PCPs

Eli Ben-Sasson, Technion

June 2017

PCP efficiency

- Recent asymptotic progress: short proofs, few queries, large soundness
 - Quasilinear PCPs, O(1) queries, polylog verifier [BS05,D08,BGHSV05,Mie08]
 - Nearly-linear PCPs, 3 bit queries, soundness 1/2 o(1) [MR10]
 - Linear-length PCPs, n^{ϵ} queries [BKKMS16]
 - ▶ LTCs approaching GV bound, log *n*^{log log *n*} queries [GKORS17]
 - Linear-length 2-round IOP, 3 queries, soundness $1/2 \epsilon$ [BCGRS17]
- This talk is about concrete, i.e., non-asymptotic PCPs
 - Why should we care? (Decentralized crypto-currencies, for example)
 - e How should we measure progress? (compression functions)
 - What do we study? (new IOPs, soundness upper bounds)
 - Measurements

Decentralized crypto-currency evangelism

- Decentralized crypto-currencies
 - Fiat, in Latin, is "It shall be"
 - ▶ Fiat Money (€, \$, ...) managed by Trusted Party (TP)
 - Bitcoin: Decentralized Fiat Money; "In Crypto We Trust"
 - Innovation: TP-based "societal function" replaced by algorithms !!
 - Which TP-based systems next? Law? Government?
- Abolishing TP creates a problem: Computational Integrity (CI)
 - CI problem: is the reported output of a computation correct?
 - Bitcoin's solution: naïve verification by re-execution
 - This solution harms privacy, fungibility and hence, adoption
- Cyrptographic proofs (IP, PCP, IOP,...) solve CI with
 - Efficiency: verifying proofs « executing computation [BFL90, BFLS91]
 - **Privacy:** ZK arguments [Kilian92, Micali94]
- Zerocash [BCGGMTV13]: zkSNARKs enhance privacy, fungibility
 - Ø ZCash: crypto-currency, launched Nov. 2016
- Given zkSNARKs, what do PCP-based ones add?
 - Transparency: AM protocols, verifier messages are public randomness

Overview

- In the second secon
- Occupies a concrete proof systems
 - definitions
 - compression measures
- Oncrete soundness
- Measurements

Proof systems - Definitions

Definition

A proof system S for $L \in NTIME(T(n))$ is a pair S = (V, P) of randomized interactive algs, satisfying

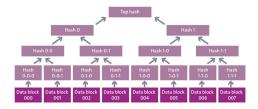
- efficiency V is randomized polynomial time; P unbounded
- completeness $x \in L \Rightarrow \Pr[V(x) \leftrightarrow P(x) \rightsquigarrow \operatorname{accept}] = 1$
- soundness $x \notin L \Rightarrow \Pr[V(x) \leftrightarrow P(x) \rightsquigarrow \operatorname{accept}] \le 1/2$

Models of interactive systems

- IP [BM, GMR]: V, P send messages
- PCP [BFL]
 - P "sends" oracle π_1
 - V has random access to π_1
 - query complexity, denoted q, is # symbols read by V,
 - proof length, denoted ℓ , is $|\pi_1|$
- IOP/PCIP [BCS16,RRR16]
 - P "sends" oracle π_1
 - V sends randomness r₁
 - P "sends" oracle $\pi_2(r_1)$
 - V sends randomness r₂
 - •
 - V has random access to π_1, \ldots, π_r
 - query complexity (q) is # symbols read by V from all oracles
 - proof length (ℓ) is $|\pi_1| + \ldots + |\pi_r|$
- IOPs offer results that are not known in PCP model
 - ▶ 2 rounds, perfect ZK for NP, scalable prover (run-time is Õ(T + k)) [BCGV16]

The Kilian-Micali (KM) argument compiler

- 3 steps: (i) P commits oracle(s); (ii) V sends queries (public randomness); (iii) P opens commitments at relevant locations
- need global commitment c_{π} to π , local vertication of answers
- use hash $H: \{0,1\}^{2\lambda} \to \{0,1\}^{\lambda}$; λ is security parameter



- *global* commitment c_{π} is label of root
- locally verify answers by appending authentication path to c_{π}
- Take-away: KM compiler increases answer size by $\lambda \cdot \log |\pi|$ bits

The Kilian-Micali compiler

• 3 steps: (i) P *commits* oracle(s); (ii) V sends queries (public randomness); (iii) P opens commitments at relevant locations

Theorem ([BM88, GMR88, BFL88, BFL91 , BGKW88, FLS90, BFLS91, AS92, ALMSS92, K92, M94])

Each $L \in NEXP$ has an argument system S = (V, P) with

- scalable verifier: run-time $poly(n, \log T)$; this bounds proof length
- transparency: verifier messages are public random coins
- zero knowledge: proof preserves privacy of nondeterministic witness
- can be **noninteractive** assuming Random Oracle

Lemma ([BCS16])

The KM compiler can be applied to a multi-round IOP, preserving soundness and ZK; assuming RO, can be noninteractive.

Overview

- In the second secon
- Output the second se
 - definitions
 - compression measures
- Oncrete soundness
- Measurements

Concrete efficiency threshold [BCGT13]

- Tradeoff between prover complexity and verifier complexity
- How do we simultaneously improve both, for concrete inputs?
- Use complexity measures μ that penalize both complexities, like

$$\mu(n) = \frac{\ell(n)}{T(n)} \cdot q(n)$$

• Define the concrete complexity threshold as smallest n s.t.

$$\mu(n) < T(n)$$

- Now we can compare systems, measure progress . . .
- Today: introduce complexity measures that have a concrete meaning

Compression ratio — PCP version

- Fix language $L \in NTIME(T(n))$ decided by M, and proof system S
- Let w(n) denote witness size (for M)
- Let $q_{\lambda}(n)$ denote query complexity for soundness error $\leq 2^{-\lambda}$

Definition (Compression ratio and threshold)

The compression function of L, M, S, λ is witness/argument ratio,

$$C(n) = \frac{w(n)}{\lambda \cdot q_{\lambda}(n) \cdot \log \ell(n)}$$

and the compression threshold θ is minimal integer (if exists) s.t.

$$\forall n \geq \theta \quad C(n) \geq 1$$

Compression ratio — PCP version

Definition (Compression ratio and threshold)

The compression function of L, M, S, λ is witness/argument ratio,

$$C(n) = \frac{w(n)}{\lambda \cdot q_{\lambda}(n) \cdot \log \ell(n)}$$

and the compression threshold θ is minimal integer (if exists) s.t.

$$\forall n \geq \theta \quad C(n) \geq 1$$

Remarks

- higher C(n) is better; lower θ is better
- C(n) scales *logarithmically* with l(n), but prover complexity scales super-linearly with l(n)
- doubly scalable systems have C(n) ~ w(n)/poly(log T(n)); we care about concrete n

E. Ben-Sasson

Compression ratio — IOP version

Definition (Compression ratio and threshold)

The compression function of L, M, S, λ is witness/argument ratio,

$$C(n) = \frac{w(n)}{\lambda \cdot q_{\lambda}(n) \cdot \log \ell(n)}$$

$$C(n) = \frac{w(n)}{\lambda \cdot \sum_{i=1}^{r} q_{\lambda}^{i}(n) \cdot \log \ell^{i}(n)}$$

and the compression threshold θ is minimal integer (if exists) s.t.

$$\forall n \geq \theta \quad C(n) \geq 1$$

C(n) for IOP with proofs π^1, \ldots, π^r and q^i_{λ} queries to π^i is \ldots

Which language to compress?

• the hash of a sequence $w_1,\ldots,w_n,w_i\in\{0,1\}^\lambda$ is

$$\mathcal{H}(w_1,\ldots,w_n) = \begin{cases} H(w_1||w_2) & n=2\\ \mathcal{H}(H(w_1||w_2),(w_3,\ldots,w_n)) & \text{otherwise} \end{cases}$$

suggestion: study the compression function and threshold of

$$L_H = \{(x,n) \mid \exists w = (w_1,\ldots,w_n), \mathcal{H}(w) = x\}$$

• Why this language?

- stepping stone towards aggregating and compressing proofs
- required for incrementally verifiable computation [V08, BCCT13]
- ▶ side question: which *H* minimizes threshold for a given proof system?

Proximity proof systems – Definitions

- Scalable PCPs use PCPs of Proximity (PCPP) as building block
- PCPPs used to verify proximity of a purported codeword to a code
- IOPP generalize PCPP exactly like IOP generalizes PCP

Definition (IOPP)

An *r*-round IOPP for a family of codes C with proximity parameter δ (say, $\delta = \delta_C/3$) is an (r + 1)-round IOP; the first oracle (π_0) , is a purported codeword, and

- efficiency V is randomized polynomial time; P unbounded
- completeness $\pi_0 \in C \Rightarrow \Pr[V \leftrightarrow P \rightsquigarrow \operatorname{accept}] = 1$
- soundness $\Delta(\pi_0, C) > \delta, \Rightarrow \Pr[V \leftrightarrow P \rightsquigarrow \operatorname{accept}] \le 1/2$

A 1-round IOPP is a PCPP; a 0-round IOPP is an LTC.

IOPP compression

Definition (Compression ratio and threshold)

The compression function of $\mathcal{C}, \mathsf{S}, \delta, \lambda$ is code-dim/argument ratio,

$$\Theta(k) = \frac{k}{\lambda \cdot \sum_{i=1}^{r} q_{\lambda}^{i}(n) \cdot \log \ell^{i}(n)}$$

and the compression threshold θ is minimal integer (if exists) s.t.

$$\forall k \geq \theta \quad \Theta(k) \geq 1$$

Remarks

- code compression is cleaner problem than language compression
- for "PCP-friendly" codes (Hadammard, RS, RM, ...) code compression needed for language compression
- compression meaningful for LTCs (0 rounds) and PCPPs (1 round)

LTC compression – examples

Hadamard: ℓ⁰ = 2^k; 3-query tester rejects δ-far words w.p. ≥ δ
 so q_λ⁰ = 3λ/log(1/1 − δ), and

$$\Theta(k) = \frac{k}{\lambda \cdot 3\lambda / \log(1/1 - \delta) \cdot \log 2^k} = \frac{\log(1/1 - \delta)}{3\lambda^2} > 1$$

- \blacktriangleright Corollary: Hadamard PCP, with KM-compiler, cannot compress any L
- Bivariate RM, fractional degree 1/2, code rate = 1/4,
 - √k query tester rejects δ-far words w.p. ≥ δ
 so q⁰_λ = √kλ/log(1/1 − δ), and

$$\Theta(k) = \frac{k}{\lambda \cdot \sqrt{k}\lambda/\log(1/1 - \delta) \cdot \log 4k} = \frac{\log(1/1 - \delta) \cdot \sqrt{k}}{\lambda^2 \log 4k} = c_{\delta,\lambda} \cdot \frac{\sqrt{k}}{\log 4k}$$

• compression threshold for $\lambda = 128$ and $\delta = 1/8$ is $\approx 2^{40}$ or 1 Tera.

PCPP compression – examples

• Hadamard: $\ell^0 = 2^k$; 3-query tester rejects δ -far words w.p. $\geq \delta$

- Corollary: Hadamard PCP, with KM-compiler, cannot compress any L
- Bivariate RM, fractional degree 1/2, code rate = 1/4,
 - \sqrt{k} query tester rejects δ -far words w.p. $\geq \delta$

•
$$\Theta(k) = c_{\delta,\lambda} \cdot \frac{\sqrt{k}}{\log 4k}, \ \theta_{128} \approx 2^{40}$$

- Quaslinear Reed Solomon (RS) PCPP [BS05]
 - recursive construction, uses bivariate RM
 - with 1 level of recursion has similar compression to RM
 - with 2 levels $q \sim k^{1/4}$, soundness $\sim 3\delta/64$, so $\Theta(k) = c'_{\delta,\lambda}k^{3/4}$ and $\dots \theta_{128} = 2^{31}$ or 2 Mega

New: Biased RS (BRS) IOPP (submitted) [BBHR17]

Theorem (RS proximity w/ linear arithmetic complexity)

Rate-1/4 RS codes have a $\frac{\log k}{2}$ -round IOPP with $q = 2 \log n$; rejection prob. $\geq \delta - o(1)$ for $\delta < \delta_C/4$, and moreover

- given π_0 , prover has total arithmetic complexity < 6 \cdot n
- Verifier decision circuit has total arithmetic complexity < 21 log n

• Length of ith oracle is
$$\ell^i(n) = n/4^i$$

Remarks

- $\bullet\,$ first proximity proof w/ linear prover-side arithmetic complexity and non-trivial q
- soundness + q combination better than [BS05]
- low "code complexity", parallelizable, implemented in STARK (later) $\Theta(k) = \frac{k}{\lambda^2 \cdot \log(1/1 - \delta) \cdot 4\binom{(\log 4k)/2}{2}} > c_{\delta,\lambda} \cdot \frac{2k}{(\log k + 2)^2}$

Compression — summary

- Hadamard: no compression threshold
- RM: $\Theta(k) \sim k^{1/2} / \log k$, $\theta_{128} \approx 2^{40}$
- 2-level [BS05]: $\Theta(k) \sim k^{3/4} / \log k$, $\theta_{128} \approx 2^{31}$
- BRS-IOPP: $\Theta(k) \sim k / \log k$, $\theta_{128} \approx 2^{26}$
- even if soundness 1/2 requires only 1 query, $heta_{128} \geq \lambda^2 = 2^{14}$
- for better compression, need tests with high soundness

Overview

- In the second secon
- **②** Complexity measures for concrete proof systems \checkmark
 - definitions
 - compression measures
- Oncrete soundness
- Measurements

Improving concrete soundness

- soundness parameter s: probability of rejecting false claim
- some PCPs have tight lower bounds on soundness
 - ▶ [Hästad 00]: 3-bit-query PCP, test is CNF clause, $s \ge 7/8 \epsilon$
 - [Moshkovitz-Raz 08]: q = 3, $s \ge 7/8 o(1)$, nearly-linear pf-length
 - [Raz-Safra 96]: Plane-vs.-plane test of RM codes, $q = n^{\epsilon}$, great soundness
- ... but use *concretely* long proofs, have large compression threshold
- concrete soundness of scalable PCP/IOP systems not tight
- consider PCPPs for RS codes, distance $\delta_C = 1 \rho_C$
 - ▶ PCPP soundness analysis breaks at unique decoding radius $(\delta < \delta_C/2 = (1 \rho)/2)$
 - goals: soundness for list-decoding radius (1- $\sqrt{\rho}),$ and even capacity $(1-\rho)$
 - bottleneck is the Polischuk-Spielman (PS) bivariate test [PS94]
 - [CMS17]: First PS soundness beyond unique-decoding radius
- [BBGR16]: initiate study of soundness upper bounds
 - no known non-trivial upper bounds on soundness, for any δ , even up to capacity (1ρ)

Compression using soundness upper bounds

Theorem (RS proximity w/ linear arithmetic complexity)

Rate- ρ RS codes have a $\frac{\log k}{2}$ -round IOPP with $q = 2 \log n$; rejection prob. $\geq \delta - o(1)$ for $\delta < (1 - \rho)/4$, and moreover

- given π_0 , prover has total arithmetic complexity < $6 \cdot n$
- Verifier decision circuit has total arithmetic complexity < 21 log n

• Length of ith oracle is
$$\ell^i(n) = n/4^i$$

Conjecture (RS proximity w/ linear arithmetic complexity, to capacity) Rate- ρ RS codes have a $\frac{\log k}{2}$ -round IOPP with $q = 2 \log n$; rejection prob. $\geq \delta - o(1)$ for $\delta < 1 - \rho$, and moreover

- given π_0 , prover has total arithmetic complexity < 6 \cdot n
- Verifier decision circuit has total arithmetic complexity < 21 log n
- Length of ith oracle is $\ell^i(n) = n/4^i$

Overview

- In the second secon
- **②** Complexity measures for concrete proof systems \checkmark
 - definitions
 - compression measures
- Oncrete soundness \checkmark
- Measurements

Practical implementation [BBHR17]

- New implemented system (zk)STARK
 - Scalable: quasilinear prover, polylog verifier
 - Transparent: AM protocol, verifier messages are public randomness
 - **ARgument of Knowledge**: can extract witness from "good" proof
 - Perfect ZK in IOP model [BCGV16, BCGRS17]; Computational ZK Kilian-Micali argument [BCS16]
 - "Post-quantum secure" no number-theoretic assumptions
 - Uses BRS-IOPP (among other things)

Practical zk-STARK benchmark: forensic DNA profile

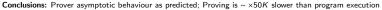
- FBI holds forensics DNA profile DB D
- ♣ knows H(D)
 - Davies-Meyer-AES160
- FBI reports Andy's DNA profile match result, along with zk-STARK proof, $\lambda = 80$
- The program verified:

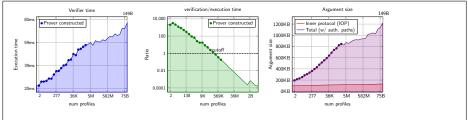
```
def prog(database):
    currHash = 0
for currEntry in database:
    if currEntry matches AndysDNA:
        REJECT
        currHash = Hash(currEntry, currVal)
    if currHash == expectedHash : ACCEPT
    else : REJECT
```


No match found

Measurements

Machine specifications: Prover: CPU: 4 X AMD Opteron(tm) Processor 6328 (32 cores total, 3.2GHz), RAM: 512GB Verifier: CPU: Intel(R) Core(TM) 17-4600 2.1GHz, RAM: 12GB, Circuit: runtime simulated for long inputs Security: Security level: 80 bits (Probability of cheating < 2⁻⁸⁰)





Conclusions: Verifier asymptotic behaviour as predicted; Speedup achieved only for a few generated arguments

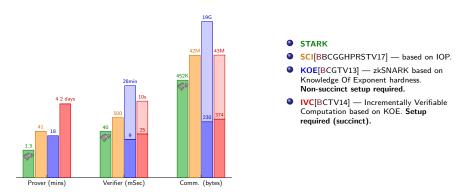
Comparison to other approaches

Machine specifications:

CPU: 4 X AMD Opteron(tm) Processor 6328 (32 cores total, 3.2GHz), *RAM*: 512GB Benchmark:

Executing subset-sum solver for 64K TinyRAM steps (9 elements — exhaustive algorithm).

Comparison to other systems - lower is better (log scale)



Fastest prover; verifier nearly fastest; lowest total CC; argument $\sim \times 1 K$ "best"

E. Ben-Sasson

Concluding remarks

- Motivation
- 2 Complexity measures for concrete proof systems \checkmark
 - definitions
 - compression measures
- Oncrete soundness
- Measurements
- attempting to implement "practical PCPs" led to new theory results
 - IOP model
 - scalable PZK for NEXP
 - RS proximity proofs with linear arith. comp.
 - ٠...
- and uncovered interesting theory questions
 - best compression ratio?
 - "proof-system friendly" crypto primitives?
 - soundness gaps for scalable PCPs?
 - concrete soundness beyond unique decoding radius?
- and lets us interact with new communities