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Motivation

PCP e�ciency

Recent asymptotic progress: short proofs, few queries, large
soundness

� Quasilinear PCPs, O(1) queries, polylog verifier
[BS05,D08,BGHSV05,Mie08]

� Nearly-linear PCPs, 3 bit queries, soundness 1�2 − o(1) [MR10]
� Linear-length PCPs, n✏ queries [BKKMS16]
� LTCs approaching GV bound, log nlog log n queries [GKORS17]
� Linear-length 2-round IOP, 3 queries, soundness 1�2 − ✏ [BCGRS17]

This talk is about concrete, i.e., non-asymptotic PCPs
1 Why should we care? (Decentralized crypto-currencies, for example)
2 How should we measure progress? (compression functions)
3 What do we study? (new IOPs, soundness upper bounds)
4 Measurements
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Motivation

Decentralized crypto-currency evangelism

Decentralized crypto-currencies
� Fiat, in Latin, is “It shall be”
� Fiat Money (e, $, . . . ) managed by Trusted Party (TP)
� Bitcoin: Decentralized Fiat Money; “In Crypto We Trust”
� Innovation: TP-based “societal function” replaced by algorithms !!
� Which TP-based systems next? Law? Government?

Abolishing TP creates a problem: Computational Integrity (CI)
� CI problem: is the reported output of a computation correct?
� Bitcoin’s solution: näıve verification by re-execution
� This solution harms privacy, fungibility and hence, adoption

Cyrptographic proofs (IP, PCP, IOP,. . . ) solve CI with
1 E�ciency: verifying proofs � executing computation [BFL90,

BFLS91]
2 Privacy: ZK arguments [Kilian92, Micali94]

Zerocash [BCGGMTV13]: zkSNARKs enhance privacy, fungibility
� ZCash: crypto-currency, launched Nov. 2016

Given zkSNARKs, what do PCP-based ones add?
� Transparency: AM protocols, verifier messages are public randomness
� (double) Scalability: quasilinear prover, polylog verifier, no setup
� Post-quantum security: no number-theoretic hardness assumptions
� Leaner crypto assumptions: CRH (interactive) / RO (noninteractive)
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Concrete complexity measures

Overview

1 Motivation ✓
2 Complexity measures for concrete proof systems

� definitions
� compression measures

3 Concrete soundness

4 Measurements

E. Ben-Sasson Concretely e�cient CI from PCPs June 2017 4 / 29



Concrete complexity measures

Proof systems – Definitions

Definition

A proof system S for L ∈ NTIME(T (n)) is a pair S = (V,P) of randomized
interactive algs, satisfying

e�ciency V is randomized polynomial time; P unbounded

completeness x ∈ L⇒ Pr [V(x)↔ P(x); accept] = 1
soundness x �∈ L⇒ Pr [V(x)↔ P(x); accept] ≤ 1�2
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Concrete complexity measures

Models of interactive systems

IP [BM, GMR]: V,P send messages
PCP [BFL]

� P “sends” oracle ⇡1
� V has random access to ⇡1
� query complexity, denoted q, is # symbols read by V,
� proof length, denoted `, is �⇡1�

IOP/PCIP [BCS16,RRR16]
� P “sends” oracle ⇡1
� V sends randomness r1
� P “sends” oracle ⇡2(r1)
� V sends randomness r2
� . . .
� V has random access to ⇡1, . . . ,⇡r

� query complexity (q) is # symbols read by V from all oracles
� proof length (`) is �⇡1� + . . . + �⇡r �

IOPs o↵er results that are not known in PCP model
� 2 rounds, perfect ZK for NP, scalable prover (run-time is Õ(T + k))
[BCGV16]

� same as above, for NEXP [BCFGRS16]
� linear-size proofs (measured in bits), soundness 1�2 and constant query
complexity; [BCGRS17]

IOPs are concretely useful; allow sparse application of proof
composition
but PCPs/IOPs are impractical: how does P “send” ⇡ without V
reading all of it?

Definition (argument system)

An argument system S for L is a pair S = (V,P) satisfying
e�ciency V is randomized polynomial time; P is similarly bounded

completeness x ∈ L⇒ Pr [V(x)↔ P(x); accept] = 1
soundness x �∈ L⇒ Pr [V(x)↔ P(x); accept] ≤ 1�2
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Concrete complexity measures

The Kilian-Micali (KM) argument compiler

3 steps: (i) P commits oracle(s); (ii) V sends queries (public
randomness); (iii) P opens commitments at relevant locations

need global commitment c⇡ to ⇡, local verfication of answers

use hash H ∶ {0,1}2� → {0,1}�; � is security parameter

global commitment c⇡ is label of root

locally verify answers by appending authentication path to c⇡

Take-away: KM compiler increases answer size by � ⋅ log �⇡� bits
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Concrete complexity measures

The Kilian-Micali compiler

3 steps: (i) P commits oracle(s); (ii) V sends queries (public
randomness); (iii) P opens commitments at relevant locations

Theorem ( [BM88, GMR88, BFL88, BFL91 , BGKW88, FLS90,
BFLS91, AS92, ALMSS92, K92, M94])

Each L ∈ NEXP has an argument system S = (V,P) with
scalable verifier: run-time poly (n, logT ); this bounds proof length
transparency: verifier messages are public random coins

zero knowledge: proof preserves privacy of nondeterministic witness

can be noninteractive assuming Random Oracle

Lemma ( [BCS16])

The KM compiler can be applied to a multi-round IOP, preserving
soundness and ZK; assuming RO, can be noninteractive.
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Concrete complexity measures

Overview

1 Motivation ✓
2 Complexity measures for concrete proof systems

� definitions ✓
� compression measures

3 Concrete soundness

4 Measurements
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Concrete complexity measures

Concrete e�ciency threshold [BCGT13]

Tradeo↵ between prover complexity and verifier complexity

How do we simultaneously improve both, for concrete inputs?

Use complexity measures µ that penalize both complexities, like

µ(n) = `(n)
T (n) ⋅ q(n)

Define the concrete complexity threshold as smallest n s.t.

µ(n) < T (n)
Now we can compare systems, measure progress . . .

Today: introduce complexity measures that have a concrete meaning
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Concrete complexity measures

Compression ratio — PCP version

Fix language L ∈ NTIME(T (n)) decided by M, and proof system S

Let w(n) denote witness size (for M)

Let q�(n) denote query complexity for soundness error ≤ 2−�
Definition (Compression ratio and threshold)

The compression function of L,M,S,� is witness/argument ratio,

C(n) = w(n)
� ⋅ q�(n) ⋅ log `(n)

and the compression threshold ✓ is minimal integer (if exists) s.t.

∀n ≥ ✓ C(n) ≥ 1
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Concrete complexity measures

Compression ratio — PCP version

Definition (Compression ratio and threshold)

The compression function of L,M,S,� is witness/argument ratio,

C(n) = w(n)
� ⋅ q�(n) ⋅ log `(n)

and the compression threshold ✓ is minimal integer (if exists) s.t.

∀n ≥ ✓ C(n) ≥ 1
Remarks

higher C(n) is better; lower ✓ is better

C(n) scales logarithmically with `(n), but prover complexity scales
super-linearly with `(n)
doubly scalable systems have C(n) ∼ w(n)�poly (logT (n)); we care
about concrete n
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Concrete complexity measures

Compression ratio — IOP version

Definition (Compression ratio and threshold)

The compression function of L,M,S,� is witness/argument ratio,

C(n) = w(n)
� ⋅ q�(n) ⋅ log `(n)

C(n) = w(n)
� ⋅∑r

i=1 qi�(n) ⋅ log `i(n)
and the compression threshold ✓ is minimal integer (if exists) s.t.

∀n ≥ ✓ C(n) ≥ 1
C(n) for IOP with proofs ⇡1, . . . ,⇡r and qi� queries to ⇡i is . . .
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Concrete complexity measures

Which language to compress?

the hash of a sequence w1, . . . ,wn,wi ∈ {0,1}� is

H(w1, . . . ,wn) = � H(w1��w2) n = 2H(H(w1��w2), (w3, . . . ,wn)) otherwise

suggestion: study the compression function and threshold of

LH = {(x ,n) � ∃w = (w1, . . . ,wn),H(w) = x}
Why this language?

� stepping stone towards aggregating and compressing proofs
� required for incrementally verifiable computation [V08, BCCT13]
� side question: which H minimizes threshold for a given proof system?
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Concrete complexity measures

Proximity proof systems – Definitions

Scalable PCPs use PCPs of Proximity (PCPP) as building block

PCPPs used to verify proximity of a purported codeword to a code

IOPP generalize PCPP exactly like IOP generalizes PCP

Definition (IOPP)

An r -round IOPP for a family of codes C with proximity parameter � (say,
� = �C�3) is an (r + 1)-round IOP; the first oracle (⇡0), is a purported
codeword, and

e�ciency V is randomized polynomial time; P unbounded

completeness ⇡0 ∈ C ⇒ Pr [V↔ P ; accept] = 1
soundness �(⇡0,C) > �,⇒ Pr [V↔ P ; accept] ≤ 1�2

A 1-round IOPP is a PCPP; a 0-round IOPP is an LTC.
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Concrete complexity measures

IOPP compression

Definition (Compression ratio and threshold)

The compression function of C,S, �,� is code-dim/argument ratio,

⇥(k) = k

� ⋅∑r
i=1 qi�(n) ⋅ log `i(n)

and the compression threshold ✓ is minimal integer (if exists) s.t.

∀k ≥ ✓ ⇥(k) ≥ 1
Remarks

code compression is cleaner problem than language compression

for “PCP-friendly” codes (Hadammard, RS, RM, . . . ) code
compression needed for language compression

compression meaningful for LTCs (0 rounds) and PCPPs (1 round)
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Concrete complexity measures

LTC compression – examples

Hadamard: `0 = 2k ; 3-query tester rejects �-far words w.p. ≥ �
� so q0� = 3�� log(1�1 − �), and

⇥(k) = k

� ⋅ 3�� log(1�1 − �) ⋅ log 2k = log(1�1 − �)
3�2

> 1
� Corollary: Hadamard PCP, with KM-compiler, cannot compress any L

Bivariate RM, fractional degree 1�2, code rate = 1�4,
� √k query tester rejects �-far words w.p. ≥ �
� so q0� =√k�� log(1�1 − �), and

⇥(k) = k

� ⋅√k�� log(1�1 − �) ⋅ log 4k = log(1�1 − �) ⋅√k
�2 log 4k

= c�,� ⋅ √k
log 4k

compression threshold for � = 128 and � = 1�8 is ≈ 240 or 1 Tera.

E. Ben-Sasson Concretely e�cient CI from PCPs June 2017 17 / 29



Concrete complexity measures

PCPP compression – examples

Hadamard: `0 = 2k ; 3-query tester rejects �-far words w.p. ≥ �
� Corollary: Hadamard PCP, with KM-compiler, cannot compress any L

Bivariate RM, fractional degree 1�2, code rate = 1�4,
� √k query tester rejects �-far words w.p. ≥ �
� ⇥(k) = c�,� ⋅ √k

log 4k , ✓128 ≈ 240
Quaslinear Reed Solomon (RS) PCPP [BS05]

� recursive construction, uses bivariate RM
� with 1 level of recursion has similar compression to RM
� with 2 levels q ∼ k1�4, soundness ∼ 3��64, so ⇥(k) = c ′�,�k3�4 and

. . . ✓128 = 231 or 2 Mega
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Concrete complexity measures

New: Biased RS (BRS) IOPP (submitted) [BBHR17]

Theorem (RS proximity w/ linear arithmetic complexity)

Rate-1�4 RS codes have a log k
2 -round IOPP with q = 2 log n; rejection

prob. ≥ � − o(1) for � < �C �4, and moreover

given ⇡0, prover has total arithmetic complexity < 6 ⋅ n
Verifier decision circuit has total arithmetic complexity < 21 log n
Length of ith oracle is `i(n) = n�4i

Remarks
first proximity proof w/ linear prover-side arithmetic complexity and
non-trivial q
soundness + q combination better than [BS05]
low “code complexity”, parallelizable, implemented in STARK (later)

⇥(k) = k

�2 ⋅ log(1�1 − �) ⋅ 4�(log 4k)�22 � > c�,� ⋅ 2k(log k + 2)2
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Concrete complexity measures

Compression — summary

Hadamard: no compression threshold

RM: ⇥(k) ∼ k1�2� log k , ✓128 ≈ 240
2-level [BS05]: ⇥(k) ∼ k3�4� log k , ✓128 ≈ 231
BRS-IOPP: ⇥(k) ∼ k� log k , ✓128 ≈ 226
even if soundness 1�2 requires only 1 query, ✓128 ≥ �2 = 214
for better compression, need tests with high soundness
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Concrete complexity measures

Overview

1 Motivation ✓
2 Complexity measures for concrete proof systems ✓

� definitions ✓
� compression measures ✓

3 Concrete soundness

4 Measurements
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Concrete complexity measures

Improving concrete soundness

soundness parameter s: probability of rejecting false claim
some PCPs have tight lower bounds on soundness . . .

� [Hästad 00]: 3-bit-query PCP, test is CNF clause, s ≥ 7�8 − ✏
� [Moshkovitz-Raz 08]: q = 3, s ≥ 7�8 − o(1), nearly-linear pf-length
� [Raz-Safra 96]: Plane-vs.-plane test of RM codes, q = n✏, great
soundness

. . . but use concretely long proofs, have large compression threshold
concrete soundness of scalable PCP/IOP systems not tight
consider PCPPs for RS codes, distance �C = 1 − ⇢C

� PCPP soundness analysis breaks at unique decoding radius
(� < �C �2 = (1 − ⇢)�2)

� goals: soundness for list-decoding radius (1-
√
⇢), and even capacity

(1 − ⇢)
� bottleneck is the Polischuk-Spielman (PS) bivariate test [PS94]
� [CMS17]: First PS soundness beyond unique-decoding radius

[BBGR16]: initiate study of soundness upper bounds
� no known non-trivial upper bounds on soundness, for any �, even up to
capacity (1 − ⇢)
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Concrete complexity measures

Compression using soundness upper bounds

Theorem (RS proximity w/ linear arithmetic complexity)

Rate-⇢ RS codes have a log k
2 -round IOPP with q = 2 log n; rejection prob.≥ � − o(1) for � < (1 − ⇢)�4, and moreover

given ⇡0, prover has total arithmetic complexity < 6 ⋅ n
Verifier decision circuit has total arithmetic complexity < 21 log n
Length of ith oracle is `i(n) = n�4i

Conjecture (RS proximity w/ linear arithmetic complexity, to capacity)

Rate-⇢ RS codes have a log k
2 -round IOPP with q = 2 log n; rejection prob.≥ � − o(1) for � < 1 − ⇢, and moreover

given ⇡0, prover has total arithmetic complexity < 6 ⋅ n
Verifier decision circuit has total arithmetic complexity < 21 log n
Length of ith oracle is `i(n) = n�4i
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Measurements

Overview

1 Motivation ✓
2 Complexity measures for concrete proof systems ✓

� definitions ✓
� compression measures ✓

3 Concrete soundness ✓
4 Measurements
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Measurements

Practical implementation [BBHR17]

New implemented system – (zk)STARK
� Scalable: quasilinear prover, polylog verifier
� Transparent: AM protocol, verifier messages are public randomness
� ARgument of Knowledge: can extract witness from “good” proof
� Perfect ZK in IOP model [BCGV16, BCGRS17]; Computational ZK
Kilian-Micali argument [BCS16]

� “Post-quantum secure” – no number-theoretic assumptions
� Uses BRS-IOPP (among other things)
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Measurements

Practical zk-STARK benchmark: forensic DNA profile

FBI holds forensics DNA profile DB D

knows H(D)
� Davies-Meyer-AES160

FBI reports Andy’s DNA profile match
result, along with zk-STARK proof,
� = 80
The program verified:

def prog ( da tabase ) :
cu r rHash = 0

f o r c u r r En t r y i n database :
i f c u r r En t r y matches AndysDNA :

REJECT
cur rHash = Hash ( cu r rEn t r y , c u r rVa l )

i f cur rHash == expectedHash : ACCEPT
e l s e : REJECT

Any match for Andy?

No match found
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Measurements

Machine specifications:
Prover: CPU: 4 X AMD Opteron(tm) Processor 6328 (32 cores total, 3.2GHz), RAM: 512GB
Verifier: CPU: Intel(R) Core(TM) i7-4600 2.1GHz, RAM: 12GB, Circuit: runtime simulated for long inputs
Security: Security level: 80 bits (Probability of cheating < 2−80)
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Conclusions: Prover asymptotic behaviour as predicted; Proving is ∼ ×50K slower than program execution
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Conclusions: Verifier asymptotic behaviour as predicted; Speedup achieved only for a few generated arguments
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Measurements

Comparison to other approaches
Machine specifications:
CPU: 4 X AMD Opteron(tm) Processor 6328 (32 cores total, 3.2GHz), RAM: 512GB
Benchmark:
Executing subset-sum solver for 64K TinyRAM steps (9 elements — exhaustive algorithm).

Prover (mins) Verifier (mSec) Comm. (bytes)

10s

43M

4.2 days

25

374

28min

19G

18
9

230

41

500

42M

1.3

40

452K

Comparison to other systems - lower is better (log scale)

Fastest prover; verifier nearly fastest; lowest total

CC; argument ∼ ×1K “best”

STARK

SCI[BBCGGHPRSTV17] — based on IOP.

KOE[BCGTV13] — zkSNARK based on
Knowledge Of Exponent hardness.
Non-succinct setup required.

IVC[BCTV14] — Incrementally Verifiable
Computation based on KOE. Setup
required (succinct).
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Measurements

Concluding remarks

1 Motivation ✓
2 Complexity measures for concrete proof systems ✓

� definitions ✓
� compression measures ✓

3 Concrete soundness ✓
4 Measurements ✓

attempting to implement “practical PCPs” led to new theory results
� IOP model
� scalable PZK for NEXP
� RS proximity proofs with linear arith. comp.
� . . .

and uncovered interesting theory questions
� best compression ratio?
� “proof-system friendly” crypto primitives?
� soundness gaps for scalable PCPs?
� concrete soundness beyond unique decoding radius?

and lets us interact with new communities
� crypto-currencies
� decentralized “societal functions”
� . . .

but need more theoreticians to think about these questions!
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