Lecture 24

Foundations of Probabilistic Proofs Fall 2020 Alessandro Chiesa

Parallel Repetition of 2P1R Games
Recall the notion of a 2-prover 1-round game: $\frac{def:}{def:} A 2PIR \text{ game is a tuple } (x,y,\phi) \text{ where}$ $\cdot x: \{0,13^r \rightarrow S_1 \text{ and } y: \{0,13^r \rightarrow S_2 \text{ are the verifierts message functions};} A = \left\{ \begin{array}{c} P_1 & V & P_2 \\ (x,y,\phi) & \text{where} \\ (x,y,\phi) & \text{where} \end{array} \right\}$ $\cdot \phi : \{0,13^r \rightarrow S_1 \text{ and } y: \{0,13^r \rightarrow S_2 \text{ are the verifierts message functions};} A = \left\{ \begin{array}{c} P_1 & V & P_2 \\ (x,y,\phi) & \text{where} \\ (x,y,\phi) & \text{where} \end{array} \right\}$ $\cdot \phi : \{0,13^r \rightarrow S_1 \text{ and } y: \{0,13^r \rightarrow S_2 \text{ are the verifierts message functions};} A = \left\{ \begin{array}{c} P_1 & V & P_2 \\ (x,y,\phi) & \text{where} \\ (x,y,\phi) & \text{where} \end{array} \right\}$
The value of the game is val $(G) := \max_{f,g} \Pr[\phi(p, f(x(p)), g(y(p))) = 1].$
The view of 2PIR games is essentially equivalent to 2-query PCPs. The L-wise parallel repetition $pr(G,t)$ of G is the game: That is, playing with strategies f, g means: $\Lambda_{ie[t]} & (p_i, f_i _{x(p_i),, x(p_i)}, g_i(y(p_i),, y(p_i)))$
It is straightforward to see that $val(G)^t \leq val(pr(G,t)) \leq val(G)$.
Last time we proved Verbitsky's theorem: $\lim_{t\to\infty} Val(pr(G,t)) = 0$ if $Val(G/<1)$.
Today we briefly discuss what is known about the rate of decay of val $(pr(G,E))$.

Raz's Theorem
In 1995 Raz proved that parallel repetition makes the value decease exponentially:
<u>HEOROM</u> : $\forall 2PIR-game G = M=M(G) s.t. val (pr(G,t)) \leq M(G)^t$.
In more detail the theorem states that there is a universal constant $<>0$ s.t. if answers in G are over alphabet Z and val(G) $\leq 1-\varepsilon$ then val(pr(G, E)) $\leq (1-\varepsilon^{\circ})^{LD}(E/\log Z)$.
Remarks: • [Feige Verbitsky 1996]: the dependence on $ og \Sigma $ is necessary • [Holenstein 2010]: can take $c \leq 3$ (vs. $c \leq 32$ in Roz's proof) • cannot expect $c \leq 1$ for all games [8 the study of when $c \approx 1$ is strong parallel repetition]
Corollary: $\forall \mathcal{E} > 0$ NP \subseteq PCP $[\mathcal{E}_{s} = 0, \mathcal{E}_{s} = \mathcal{E}, \Sigma = \{0, 1\}^{O(\log \frac{1}{2})}, \mathcal{L} = n^{O(\log \frac{1}{2})}, q = 2, \Gamma = O(\log \frac{1}{2} \cdot \log n)]$
<u>provel</u>: In three steps: ① Go from PCP Theorem to 211R-game G with val(G)<1, r=O(logn), and $\Sigma = \{0, 13^{O(1)}\}$. ② Paralle' repeat game with $t = (log =)/(log n(G1) = O(log \epsilon)$. By Rat's Theorem val(pr(G,t)) $\leq \epsilon$. ③ Go from (repeated) 2P1R-game back to a 2-query PCP (with $\Sigma = \{0, 13^{O(1)}, l = 2^{O(10+r)}\}$.

Main Lemma Behind Raz's Theorem	•
Fix strategies f, g for the t-wise parallel repetition $pr(G,t)$. Define the indicator $W_i = \mathscr{B}(p_i, f_i(x_ip_i),, x_ip_t), g_i(y_ip_i),, y_ip_t))^{"}$ and more generally for SS[t], $W_s = \Lambda_{ies} W_i$. By assumption we know that $Pr[W_i],, Pr[W_t] \leq 1 - \varepsilon$. The goal is to bound $Pr[W_i \land \land W_t]$.	
Main Lemma: 38=8(G) ¥S⊆[t] with ISI≤8.t if Pr[Ws]≥2-8t then Fielt]IS Pr[W:IWs]≤1-€	•
This implies the theorem as explained below. Start with $S=\emptyset$ and do the following while $ S \leq 8t$: D If $Pr[Ws] < 2^{-8t}$ then exit loop. $@$ If $Pr[Ws] > 2^{-8t}$ then add to S a new index is st. $Pr[WilWs] \leq 1-\frac{9}{2}$ (guaranteed by Main Lemma	u)
If the first condition is met at some iteration then $\mathcal{B}[W_1, \dots, W_k] \leq \mathcal{B}r[W_s] \leq 2^{-\delta t}$. If the first condition is never not, then we obtain $S = \{\hat{u}, \hat{u}_2, \dots, \hat{u}_{kk}\}$ such that $\Pr[W_1, \dots, W_k] \leq \Pr[W_s] = \Pr[W_{i_1}]\Pr[W_{i_2} W_{i_1,i_2}]\Pr[W_{i_3} W_{i_1,i_2}] \dots \leq (1 - \frac{\varepsilon}{2})^{kt}$.	•
We conclude that $P[W_1, \dots, W_t] \leq \max \{2^{-\delta t}, (1-\xi_2)^{\delta t}\} = \exp(-c(q)t)$.	

•

•

٠

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

٠

•

•

•

•

•

•

•

PCPs with	Sub-Const	ant Sour	ndness	Error
Parallel repetition gives, for q=2, soundness error ε over an alphabet of size $ Z = poly(\frac{\varepsilon}{\varepsilon})$. The main limitation is that proof length becomes $\mathcal{L} = n^{O(\frac{\varepsilon}{\varepsilon})}$ so that if we want $\mathcal{L} = poly(n)$ then parellel repetition dues not tell us anything for $\varepsilon = o(1)$.				
	chieve sub-constant uping q=2, or at m			er-constant alphabet size?
Several construct	zδ√2:	· · · · · ·	· · · · · · ·	
[AS97],[RS97]	$\mathcal{E} \geqslant \exp\left(-\left(\log n\right)^{\frac{1}{10}}\right)$	Σ = poly (±)	l = poly(n)	q = 2
[DFKRS99]	$\varepsilon \ge \exp\left(-\left(\log n\right)^{1-\delta}\right)$	[Zl=poly(1)	l = poly(n)	$q = O\left(\frac{1}{\delta}\right)$
[MR08][DH09]		$ \Sigma = \exp\left(\frac{1}{\epsilon}\right)$	l = poly(n)	9=2
[DHKIS]	E≥ poly(+)	Z= npolylogbyn	l = poly(n)	q=polyhoghogn
Several of Huse	are achieved via f	high-soundness a	emposition of	high-soundness ingredients.
· · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · ·	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Sliding Scale Conjecture

The prevailing Lellef is that soundness error ε is achievable via an alphabet of size poly $(\frac{1}{\varepsilon})$. This was formulated in a conjecture by Bellare, Goldwasser, Lund, Russell in 1993:

• • • • • •

• • • • • •

• • • • • • •

Sliding Scale Conjecture I constant goeN VEZ _____ poly(n)

 $NP \subseteq PCP [E_c = 0, E_s = E, \Sigma = \{0, 1\}^{O(log_{E})}, R = poly(n), q = q_0, \Gamma = O(log_{N})]$

Leads to asymptotically shorter succinct arguments (fewer queries for same security level). Implies optimal hardness of approximation results for several problems A interest (such as directed sparsest cut, directed multi-cut and more if PIP is a "projection" game). The "sliding" refers to the parameter & that can more anywhere in the interval [_____]). Next we build intuition for why the conjecture books like this. E.g., why can't we expect $E = 2^{-n}$ with a large enough alphabet $(\sim 2^{\sqrt{n}})$?

Intuition for Formulation of Conjecture
Sliding Scale Conjecture 3 constant goeN VEZ - poly(n)
$NP \subseteq PCP [\mathcal{E}_{c} = 0, \mathcal{E}_{s} = \mathcal{E}, \Sigma = \{0, 1\}^{O(log_{\mathcal{E}})}, \mathcal{L} = poly(n), q = q_{0}, \Gamma = O(log_{n})]$
Why does the conjecture look like this?
Suppose that $L \in P(P[e_c=0, e_s=\varepsilon, \Sigma, l, q, r])$ via a PCP system (P,V).
Observation:
• if $\exists x \notin L$, $p \in \{0, 13^{\ell}, T \in \mathbb{Z}^{\ell} \ s \neq V^{T}(x; p) = 1$ then $\mathbb{E} \geqslant 2^{-\ell}$
• if $\exists x \notin L \forall p \in f_{0,1}S \exists \pi \in \mathbb{Z}^{\ell} s \cdot t \cdot V^{\pi}(x; p) = 1$ then $\varepsilon > \Sigma ^{-9}$ (pick a random local view)
Moreover we may assume that $\exists x \notin L \forall p \in [0,13] \exists TT \in \mathbb{Z}^{\ell} s.t. V^{TT}(x;p) = 1$, because if not:
lemma: If VX&L 3pefo,13 & TTEZ VT (Xjp)=0 then LEDTIME (exp(r+qlog IZI)).
proof: By perfect completeness, fixel JTTEZ #pefo,13 VTT(x;p)=1. Hence the decider works as follows:
D(X):= For pEEO,13 ^c : {if all losal views in 2 [°] reject then output 03. Else cutput 1.
We deduce that $\varepsilon \ge \max\{2^{-r}, \Sigma ^{-9}\}$ (and hence $ \Sigma \ge (\frac{1}{2})^{\frac{1}{9}}$), so that $\frac{1}{poly(n)} \le \varepsilon \le 1$
when $r = O(\log_n), q = O(1), \Sigma = pol_1(\frac{1}{2}) = 2^{O(\log_{\frac{1}{2}})}$
But what if $r = w(logn), \Sigma = w(logn), or Ec > 0?$

Limitations for High-Soundness PCPs
The amount of information read by a PGP verifier is $g \cdot \log Z $ bits. This is interesting for NP languages when $g \cdot \log Z \ll n$ (as reading an n-bit witness has no soundness error). In this regime the soundness error must be $\Omega(2^{-9\log l})$:
<u>Hestern</u> : Assuming the (randomized) exponential-time hypothesis, 3SAT does not have PGPs where $g.(\log \log 21) = o(n)$ and $\mathcal{E} = o(2^{-g \log l})$.
In particular, for $l = poly(n)$ and $q = O(1)$ we get $E \ge poly(\frac{1}{n})$. In other words in this regime we cannot expect exponentially-small error, regardles of alphabet size.
The theorem follows from a generic lemma that gives "algorithms for POPS";
lemma: Suppose that LEPCP[Es, Es, Z, l, q, r]. If Es< (1-E2). 2-9.1092 Her
L \in BPTime $\left[\exp\left(q\cdot\left(\log 1 + \log Z \right) + \log \frac{1}{(1-\varepsilon_2)2^{-9/8}}\right)\right]$.
Proof has two steps: 1) from PCP to laconic MA protocol 2) from laconic MA protocol to BP algorithm

Step 1: from PCP to Laconic MA Conimprove to 2" where h is "query e	'ntcopy"
Imma: Suppose that LEPCP [$\varepsilon_c, \varepsilon_s, \Sigma, \ell, q, r$]. If $\varepsilon_s < (1 - \varepsilon_c) \cdot 2^{-q \cdot \log \ell}$ then L has an MA proof with $\varepsilon_c' = 1 - (1 - \varepsilon_c) \cdot 2^{-q \cdot \log \ell}$, $\varepsilon_s' = \varepsilon_s$, and $pc = q \cdot (\log \ell + \log \Sigma)$.	
proof: Let (Ppop, Vpcp) be the PCP for L. We construct the MA protocol (PMA, VMA) as follows!	• • •
P _{MA} (x) 1. Compute II:= P _{PTP} (x). 2. Guess query set QE[1], 3. Send $\mathcal{P} = (Q, \Pi[Q])$. Vna(x, $\tilde{\mathcal{T}} = (\tilde{Q}, \Pi[Q])$.	 . .<
$\frac{\text{Completeness:}}{\text{Prep Guesses the correct query set. Hence } P_{\Theta, p} [V_{Per}^{\Pi}(x;p)] \ge 1-\varepsilon. \text{ With probability} \ge {\binom{p}{q}}^{2} \ge 2^{-9}$	logl
Soundness: Suppose that for $x \notin L$ there is $\tilde{\pi} = (\tilde{\alpha}, \tilde{\Pi}[\tilde{\alpha}])$ st. $\Pr[V_{ma}(x, \tilde{\pi}) = 1] > E_s$. Then for $\tilde{\Pi} := [equal to \tilde{\Pi}[\tilde{\alpha}]$ on $\tilde{\alpha}$ and arbitrary outside of $\tilde{\alpha}$ "it holds that $\Pr[V_{max}] = 1] > E_s$ (contradiction	n).
$\frac{\text{Prover communication}}{ \mathbf{r} = \mathbf{Q} + \mathbf{I}\mathbf{T}[\mathbf{Q}] = q \cdot \log \mathbf{Z} .$	9

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Step 2: from Laconic MA to Algorithm
<u>lemma</u> : If L has an MA protocol with completeness error ε_{c} , soundness error ε_{s} , and prover communication points than L ε BPTime $[2^{O(pc)}poly(\frac{1}{1-\varepsilon_{c}-\varepsilon_{s}},n)]$.
proof: Estimate the acceptance probability for every possible MA proof.
$A(x) := 1. \text{ For every possible M4 proof } \widetilde{\pi} :$ $I.I. \text{ Sample } p_1, \dots, p_k \in \{0, 13^{\circ} \text{ and compute } N(\widetilde{\pi}) := \left \left\{ i \in [t] \mid V_{H4}(x, \widetilde{\pi}; p_i) = i \right\} \right .$ $I.2. \text{ If } N(\widetilde{\pi})/t > (1-\varepsilon_k) - \frac{1-\varepsilon_k-\varepsilon_k}{2} \text{ Her output } 1.$ $2. \text{ Output O.}$
For $\tilde{\pi}$ and p let $\mathbb{Z}(\tilde{\pi}, p)$ be the indicator that $V_{\text{Ha}}(x, \tilde{\pi}, p) = 1$. Note that $\mathbb{Z}(\tilde{\pi}, p_i), \dots, \mathbb{Z}(\tilde{\pi}, p_k)$ are i.i.d. samples from Bernoulli distribution with bias $p(\tilde{\pi}) \coloneqq \mathbb{B}_p[V_{\text{HA}}(x, \tilde{\pi}) \leftarrow 1]$. By an additive Chernoff bound $\Pr_{p_1,\dots,p_k}[\frac{1}{k}\sum_{i=1}^{k}\mathbb{Z}(\tilde{\pi}, p_i) - p(\tilde{\pi}) > \alpha] \in \exp(-k\alpha^2)$. If $x \in L$ then $\exists \pi$ s.t. $p(\pi) \ge 1 - \varepsilon_{\epsilon}$. If $x \notin L$ then $\exists \pi$ s.t. $p(\pi) \ge 1 - \varepsilon_{\epsilon}$. If $x \notin L$ then $\forall \tilde{\pi}$ $p(\tilde{\pi}) \le \varepsilon_{s}$. To distinguish between these we need $\alpha < \frac{1}{2}((1-\varepsilon_{\epsilon}) - \varepsilon_{s})$ and $E = O(\frac{1}{\alpha}, pc)$ so the error is $O(\frac{1}{2}r_{\epsilon})$ for a union bound on all $\tilde{\pi}$.
We conclude that for $E = O\left(\frac{1}{(1-\varepsilon_c-\varepsilon_s)^2}, pc\right)$ the algorithm A has constant 2-sided (cnor.

Limitations for High-Soundness IOPs
Can we hope for significantly better soundness error via IOPS instead of POPS? The answer is, to a first order, NO. The reason is that one can design similarly efficient "algorithms for IOPS".
In more detail, similarly to a POP, the amount of information read by an IOP verifier is $g \cdot \log Z $ bits. This is interesting for NP languages when $g \cdot \log Z \ll n$ (as reading an n-bit withus has no soundness error). And, similarly to before, in this regime the soundness error must be $LL(2^{-9}\log^2)$.
The technical lamma is as follows: <u>lemma</u> : Suppose that LE IOP[Es, Es, K, Z, l, q, r] (publicains). If $E_{s} < (1 - E_{c}) \cdot 2^{-q \cdot \log l}$ then L \in BPTime [exp(q \cdot (logl+loglZl) + K $\cdot \log \frac{K}{(1 - E_{c})2^{-q \cdot \log l} - E_{s}}$].
Proof has two steps: 10 from (public-coin) IOP to laconic (public-coin) IP protocol 2 from laconic (public-coin) IP protocol to BP algorithm