Lecture 23

Foundations of Probabilistic Proofs Fall 2020 Alessandro Chiesa

Limits on Query Complexity
We have proved the PCP Theorem: NP \subseteq PCP [$\varepsilon_c = v, \varepsilon_s = \frac{1}{2}, \Sigma = \{0, 13, l = poly(h), q = O(l), r = O(logn)$].
Q: How small can query complexity be?
• We do not expect q=1 for hard languages:
Suppose that L has a PCP (P,V) with proof length l over alphabet Σ , and with guery complexity $q=1$. Then L has a 1-round IP as follows!
$P_{IP}(x) \qquad \bigvee_{IP}(x)$ $\pi := P(x) \qquad \underbrace{\lambda}_{\pi[i]} \qquad \bigvee_{i(x) \stackrel{?}{=} i}$
The proper-to-verifier communication complexity is $\log \Sigma $. By the limitations on laconic IPs that we saw earlier, we cannot expect $\log \Sigma = o(n)$ for NP-hard languages (e.g. 354T).
• The situation with $q=2$ is quite different.

Two-Query PCPs
Are there two-query PCPs?
• No, if over the binary alphabet Z= {o,1} land the POP is non-adaptive):
$[\underline{emma}: PCP[\underline{Ec}=0, \underline{Es}<1, \underline{\sum}=\{0, 1\}, \underline{R}=poly(n), \underline{q}=2, \underline{r}=O(ogn] \subseteq \mathbb{P}$
proof: We view a candidate POP string as & variables Z1,, Ze.
For every choice of randomness peto,17, the decision algorithm of V(x;p) is a function
Øx, p(21,, 21) that depends on two variables among the l'variables.
If x e L then there is an assignment $a_1,,a_k$ s.t. $\bigwedge \ p_{x,p}(a_1,,a_k)=1$
If x & L then there is no assignment that satisfies more than an Es-fraction of $\{ p_{x,p} \}_p$.
Deciding between these two is an instance of 254T, which is in P.
• Yes, if over larger alphabets Z:
$\underline{ emma:} \exists C \in N NP \subseteq PCP[\mathcal{E}_{c}=O, \mathcal{E}_{s}=I-\frac{1}{c}, \Sigma=\{0,1\}, l=poly(n), q=2, r=O(logn)]$
proof: Apply the trivial query bundling to the PCP Theorem.
$PCP[E_s, \Sigma, R, q, r] = PCP[E_s = 1 - (1 - E_s) + \Sigma = \Sigma^q, R = O(R + 2^r), q' = 2, r' = r + \log q].$

.

•

•

٠

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

٠

•

•

•

•

•

•

•

Small Query Complexity and Small Soundness Error?
Repeating the PCP verifier technics soundness error but also increases query complexity:
$\forall t, PCP[\mathcal{E}_{c}=1, \mathcal{E}_{s}, \Sigma, l, q, r] \leq PCP[\mathcal{E}_{c}'=1, \mathcal{E}_{s}'=\mathcal{E}_{s}', \Sigma'=\Sigma, l'=l, q'=t, q, r'=t, r]$ And randomness-efficient error reduction (e.g. via expanders) does not help for this.
Idra: bundle queries across multiple repetitions
E.g. $\Pi: \begin{bmatrix} l^2 \end{bmatrix} \rightarrow \sum^2 \qquad \prod_i \prod_i \cdots \prod_i \prod_i \prod_i \prod_i \prod_i \dots \prod_i \prod_i \prod_i \dots \prod_i \prod_i \prod_i \dots \prod_i \prod_i \prod_i \dots \prod_i \dots \prod_i \prod_i \dots \prod_i \dots \prod_i \dots \prod_i \dots \dots \prod_i \dots \dots \dots \prod_i \dots \dots$
$\begin{aligned} & (x, p_1) \rightarrow (i_1, i_2) \\ & (x, p_2) \rightarrow (j_1, j_2) \end{aligned} \xrightarrow{idx_1 = (i_1, j_1)} idx_2 = (i_2, j_2) \\ & \Pi[idx_1] = (a_1, b_1) \xrightarrow{\pi} [idx_2] = (a_2, b_2) \\ & \Pi[idx_2] = (a_2, b_2) \\ & D(x, p_1, (a_1, a_2)) \\ & D(x, p_2, (a_1, a_2)) \\ & D(x, p_2, (a_1, a_2)) \end{aligned}$
The proof length <u>and</u> the alphabet size squares. Each query consists of one symbol per repetition. The soundness error did not increase as winning is at least as hard as winning one instance. The intuition is that the soundness error should be smaller, ideally quadratically so.

Parallel Repetition	
More generally, this leads to the t-wish	e parallel repetition of a given (non-adaptive) PCP:
P _E (x) 1. Compute $\pi := P(x) \in \Sigma^{\ell}$. 2. Compute $\Pi = ((\pi(i_1), \dots, \pi(i_{\ell})))_{i_{\ell}, \dots, i_{\ell} \in [\ell]} \cdot$ 3. Output $\Pi \in (\Sigma^{\ell})^{\ell}$.	$V_{t}(x)$ 1. Sample $p_1, \dots, p_t \in \{0, 1\}^{r}$. 2. Deduce query sets: $\forall i \in [t], \ Q_i := Q(x, p_i) \in [l]$. 3. Construct toples: $\forall j \in [q] \ idx_j = (Q_i \lfloor j], \dots, Q_t \lfloor j]$) 4. Check that $\Lambda_{i \in [t]} D(x, p_i, \prod \lfloor idx_i]_i \dots \prod \lfloor idx_q]_i) = 1$.
The intuition is that Es' should be equally In sum, we expect the E-wise parallel	and each query is a tuple of t indices. Fy $E_8^t \le E_8^t \le E_8$ (E_8 is the old soundness error) al to E_8^t (exponentially smaller than E_8).
We will see that this is false in general, t	though the intuition is qualitately true when $q=2$.

2-Player 1-Round Games
We focus on g=2 and move to a different view to discuss parallel repetition:
<u>def</u> : A 2PIR game is a tuple (x,y,ϕ) where $x: \{0,1\}^r \rightarrow S_i$ and $y: \{0,1\}^r \rightarrow S_2$ are the verifier's message functions and $\phi: (0,1)^r \times \Sigma_i \times \Sigma_2 \rightarrow \{0,1\}$ is the verifier's decision predicate.
The game is played as follows: $ \begin{array}{c} P_{1} V P_{2} \\ \xrightarrow{\chi(\rho)} \rho \in \mathfrak{fo}, \mathfrak{f}^{\prime} \underbrace{\gamma(\rho)}_{\mathcal{F}} \\ \xrightarrow{\chi(\rho)} \varphi \in \mathfrak{fo}, \mathfrak{f}^{\prime} \\ \xrightarrow{\chi(\rho)} \varphi \in \mathfrak{f}^{\prime} \\ \chi(\rho$
$ \xrightarrow{\alpha} \phi(\rho, \alpha, b)^{?} = I \leftarrow The players can share randomness but that does $
The value of the game is val $(G) := \max_{f,g} \Pr[\phi(p, f(x(p)), g(y(p))) = 1]$. not change a gamet value.
This view is essentially equivalent to 2-query Pars:
• $PCP[\varepsilon_{c}, \varepsilon_{s}, \Sigma, \ell, 2, \Gamma] \rightarrow 2PIR[\varepsilon_{c}, \varepsilon_{s}^{l} = 1 - \frac{1 - \varepsilon_{s}}{2}, (\Sigma^{2}, \Sigma), \Gamma]$
• $2PIR[\varepsilon_{c}, \varepsilon_{s}, (\Sigma_{1}, \Sigma_{2}), \Gamma] \rightarrow PCP[\varepsilon_{c}, \varepsilon_{s}, \Sigma = \Sigma_{1} \vee \Sigma_{2}, l = 2 \cdot Z', q = 2, \Gamma]$ Y(a) = Y(a) = Y(a) = Y(a)
• $2 \operatorname{FIR}[ec, es, (2i, 2i), r] = \operatorname{PCR}[ec, es, L=2iv2i, l=2iv2$
That is, playing with strategies f, g mpans:
It is straightforward to see that val(G) ^t \leq val(pr(G,t)) \leq val(G). Question (that encapsulates parallel repetition for 2-gravy PCPs): val(pr(G,t)) = val(G) ^t ?

.

Refuting Expectation	[1/2]
Fortnow, Rompel, Sipser (1988) conjectured that parallel repetition decays exactly expor Then in 1989 Fortnow found a counterexample to this conjecture. We see a simpler counterexample due to Feige in 1991, Known as "non-interactive agree	· · · · · ·
Consider the following 2PIR game G:	
Po V Pi	
$\underbrace{bo}_{b_1,b_1} \leftarrow \{b_1,b_1,b_1,b_1,b_1,b_1,b_1,b_1,b_1,b_1,$	
$\frac{u_{0,\vee_{0}}}{(u_{0,\vee_{0}})^{\frac{2}{2}}(u_{1,\vee_{1}})} \xleftarrow{u_{1,\vee_{1}}}{b_{u_{0}}^{\frac{2}{2}}\vee_{0}}$	· · · · · ·
("Ph. received bit v.")	
$\frac{\text{claim: val}(\tilde{G}) = \frac{1}{2}}{2}$	· · · · ·
: <u>fcong</u>	•••••
• val(G) = 1/2: Po answers (0, bo) and Pi answers (0,\$)	· · · · ·
· val (G) < 1/2: WLOG both players agree on whose player's Lit they guess,	
and one player has to guess a random bit that it knows nothing about	•
· · · · · · · · · · · · · · · · · · ·	7

Refuting Expec	tation	[2/2]
Now consider the 2-wis	se repetition of the 2PIR game G:	
	$P_{0} \qquad \bigvee \qquad P_{1} \qquad P_{1} \qquad \qquad$. .
$\frac{\text{claim}}{\text{proof}} \cdot \text{Val}\left(\text{pr}(\tilde{G}, 2)\right) = \frac{1}{2}$ $\cdot \text{Val}\left(\text{pr}(\tilde{G}, 2)\right) \leq \frac{1}{2}$	$\sqrt{2}$ (!!!!) val (pr($\hat{a}, 2$)) < val (\hat{a}) = 1/2	. .
_		win I] = [1, 1]

Verbitsky's Theorem
We have learned that the following is false: val $(pr(G_1t)) = val(G)^{t}$. That said for the counterexample \tilde{G} parallel repetition does work, just slower than expected: Feige in 1991 also proved that val $(pr(\tilde{G},t)) = (\frac{1}{2})^{t/2} = (\frac{1}{\sqrt{2}})^{t}$.
More generally, Verbitsky proved that parallel repetition decreases value for every game:
<u>Hestem</u> : $\forall 2PIR game G$ if $val(G) < 1$ then $\lim_{t \to \infty} val(pr(G, t)) = 0$.
The proof generalizes to any number of players. The proof is a direct application of a deep result in Ramsey theory (which studies conditions under which "order" must appear), and so the value decays SLOWLY.
Via the PCP = 2PIR-game connection and the PCP Theorem we learn that:
corollary: $\forall \mathcal{E} > 0 \exists \Sigma s.t. NP \subseteq PCP[\mathcal{E}_{c}=0, \mathcal{E}_{s}=\mathcal{E}, \Sigma, l=poly_{\mathcal{E}}(n), q=2, r=Q_{\mathcal{E}}(log_{n})]$
That is, with 2 queries we can make the error as small as we want, for a large enough alphabet. Yet at this point we don't know if the number A repetitions can be a reasonable function of E .

A Result On Combinatorial Lines
Let A be a finite alphabet and $\triangle \notin A$ a special symbol. A word is a string in A^* and a <u>root</u> is a string in $(A \cup \{\Delta\})^{\circ} \setminus A^*$. For a root it and as A, it(a) is the word (in A^*) obtained by replacing each \triangle with a. EX: $A = \{1,2,3\}$ it = 31 $\triangle 12 \triangle$ it(1) = 311121 it(3) = 313123
A <u>combinatorial line</u> in A^{t} is a subset $L \subseteq A^{t}$ that looks like $\{rt(a)\}_{a \in A}$ for a root rt. Ex: $A = \{1, 2, 3\}$ rt=31 $\triangle 12\Delta$ $L_{rt} = \begin{pmatrix} 3 & 1 & 1 & 2 & 1 \\ 3 & 1 & 2 & 1 & 2 & 2 \\ 3 & 1 & 3 & 1 & 2 & 3 \end{pmatrix}$ Hence combinatorial lines are in correspondence with roots, of which there are $(A +1)^{t} - A ^{t}$.
Let $N(A,t)$ be the maximum size of any set $W \subseteq A^{\pm}$ containing No combinatorial lines. Note that $N(A,t)$ is an integer in $\{0,1,, A ^{\pm}\}$. <u>Theorem [Furstenberg, katenelson 1991]</u> $\forall A \forall \in >o \exists T \forall t \ge T$ $\frac{N(A,t)}{ A ^{\pm}} < \epsilon$ The Polymath project gave in 2010 quantitative bounds: $T \sim Ack_{ A }(\frac{1}{\epsilon})$. (The Ackermann function is: $Ack_{m}(i) = 2$, $Ack_{i}(n =2n, Ack_{m}(n =Ack_{m-1}(Ack_{m}(n-1)).)$)

.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Proof of Verbitsky's Theorem	Note: He argument belaw works
Let A = {0,1}" (set of random strings of the rerifier).	similarly for any number of players.
We argue that if val(4/<1 then val $(pr(4,b)) \leq \frac{N(A,b)}{ A ^{b}}$, which concludes the proof (vig [FK91]).
Let $X(p), Y(p)$ be the verifier's messages to P_i, P_2 when the Fix optimal strategies f_ig for P_i, P_2 and define the winning $W = \{(p_1, \dots, p_k) \in A^k \mid A_{i} \in \{t\}\} \ \emptyset(p_i, f_i(X(p_i), \dots, X(p_k)), g_i\}$	randomness is p. set:
By definition val $(pr(G,t)) = \frac{ W }{ A t}$. It suffices to show the Suppose by way of contradiction that there is a root tt who For simplicity $rt = \tilde{p}_{i} \dots \tilde{p}_{i} \Delta$ and consider the following stre	at W contains no combinatorial line. Use combinatorial line L _{rt} is in W.
$P, \qquad V \qquad P_{z}$ $f_{t}\left(\chi(\widetilde{p}_{1}), \dots, \chi(\widetilde{p}_{t-1}), \chi(p)\right) \qquad y(p) \qquad f_{t}\left(\chi(\widetilde{p}_{1}), \dots, \chi(\widetilde{p}_{t-1}), \chi(p)\right) \qquad y(p) \qquad f_{t}\left(\chi(\widetilde{p}_{1}), \dots, \chi(\widetilde{p}_{t-1}), \chi(p)\right) \qquad y(p) $	
These strategies win w.p. 1 because the entire combinatori This contradicts the assumption that $val(G) < 1$.	al line is in W.