Lecture 20

Foundations of Probabilistic Proofs Fall 2020 Alessandro Chiesa

Proof Composition
We have seen techniques to achieve either i) polynomial proof length and polylogarithmic query complexity, or ii) exponential proof length and constant query complexity
How to achieve the best of both? (polynomial proof length & constant query complexity)
We will learn about PROOF COMPOSition: a technique to combine two PDEs so that the composed POR inherits the proof length of one PUP and the query complexity of the other PCP. Intuitively, if we apply this to D and (i) then we will get the best of both. In particular this leads to a result known as the POP Theorem: $NP \subseteq POP [E_{c}=0, E_{s}=12, E=S0, 13, L=poly(N), q=O(1), r=O(logn)]$.
We will also harn about INTERACTIVE Proof COMPOSITION, which works for IOPS. For example, this hads to an optimal tradeoff between proof length & query complexity: $CSAT \subseteq IOP [E_{c}=0, E_{s}=1/2, K=3, Z < former, L = O(n), q = O(1), r = O(logn)].$
Lat's start by building intrition on proof composition.

High-Level Plan	
Ingredients: (i) an outer PCP (Pour, Vour) fi (ii) an inner FCP (Pin, Vin) f We wish to construct a new PCP (P,V) for	or the relation R(Vout) "good" over complucity
Idea: use the inner PCP to check the c [this is reminiscent of code concatenal TT = (Tout) Vout $(X; pout)$	computation of the outer PGP's verifier tion in coding theory for reducing alphabet size]
P(x)	$\nabla^{\pi}(\mathbf{x})$
 Compute outer P(P: Thest := Post (X) For each post ∈ {0,13^{Cost}: Compute inner P(P for post as Thin [post]:= Pin ((X, post)) Output TT:= (Thest, (Thin [post]) post ∈ {0,13^{Cost}}). 	1. Sample pour & {013 "out. 2. Check Hat Vin [fout] ((x, pour)) = 1. Xin This plan has some problems

Problems with the Plan
Tout Tin (pi) Tin (pi) Tin (pi) Vin ((x, part); pin) Vout (x; pourt) Possibly inconsistent choice across different pourt Problem: It could be that $\forall poure \{0,13^{rour} \exists Tour V_{out}(x; pourt)=1 (even when x&L).$ If so, the inner PCP is invoked on the true statement " $\exists Trout V_{out}(x; pourt)$ ".
Approach: Each inner PQP should be a "prost of proximity" for the corresponding local view. Compare: "is there a satisfying local view for (x, port)?" vs. "is this local view (derived from the given TTout) satisfying for (x, port)?" In particular each TTin[pout] is specifically about TTout [Qout (x, pout)]; Vin [Qout (x, pout)], TTin[fout] ((x, pout))
• Problem: We cannot hope to detect with a small number of queries to a local view whether the local view is accepting or rejecting. (Maybe it differs in I location from an accepting one!)
Approach: The outer PCP should be robust, i.e., if X&L then why a local view is far from any accepting local view.

•

Robust PCPs [for outer PCP]
Soundness in a PCP states that the probability that a local view is accepting is small. Robust soundness strengthens this to require that the probability that a local view is close to accepting is small. (In other words, who a local view is far from accepting.)
We restrict attention on non-adaptive verifiers, which can be viewed as follows:
$V^{T}(x;p) = D(x,T[Q(x,p)],p)$ where $\begin{cases} Q \text{ is the query algorithm of } V \\ D \text{ is the decision algorithm of } V \end{cases}$ This induces the relation of accepting local views for the verifier $V:$ $R(V):= \{(x,p),a\} \mid a \in \Sigma^{Q(x,p)} \land D(x,a,p)=1\}$
def: (P,V) is a PCP system for a language L with robustness parameter or if:
() <u>completeness</u> : $\forall x \in L$, for $\pi := P(x)$, $\Pr[V^{\pi}(x;\rho)=1] \ge 1-\varepsilon_{e}$ and $((x,\rho);\alpha) \in R(v)$ }
② robust soundness: $\forall x \notin L \forall \pi P_p[\Delta(\pi[Q x,p)], R(v)[(x,p)]) \le c] \le \varepsilon_s$
<u>Note</u> : Standard soundness is above definition with $\sigma = 2$: $V^{\tilde{\pi}}(x;p) = 1 \iff \Delta(\tilde{\pi}[Q(x,p)], R(V)[(x,p]) = 0.$ (In fact also for any $\sigma \in [0, V_q)$ because the strings being compared have g symbols.)

PCPs of Proximity [for inner PCP]
A PCPP is to prove, for a given instance x and canduidate witness w, that w is close to a valued witness for x (if one exists). The PCPP verifier has proxly access to w (and a proof).
Let $R = \{(x,w)\} \dots 3$ be a binary relation. Define • He language of $R: L(R) = \{x\} = \{w\} \times (x,w) \in R\}$ • He valid witnesses of $x: R[x] = \{w\} \times (x,w) \in R\}$ [if $x \notin L(R)$ then $R[x] = \emptyset$]
def: (P,V) is a PCPP system for a relation R with proximity parameter of if:
$(1) \text{ completenss: } \forall (x,w) \in \mathbb{R}, \text{ for } \pi := \mathbb{P}(x,w), \mathbb{P}[\mathbb{V}^{w,\pi}(x;p)=1] \ge 1-\mathcal{E}_{e} \left[\Delta(w, \emptyset):=1 \right]$
② proximity soundness: $\forall (x, w)$ if $\Delta(w, R[x]) \ge \delta$ then $\forall \pi P[V^{m,\pi}(x; p) = 1] \le \varepsilon_c$
P(X,W) PITTER V(X) V(X) Counts quaries to WXIT.
Note: even if x = L(R), the PCPP verifier will still reject who if w is far from R[x] => PCPPs are about proximily to valid witnesses not (just) about membership in L(R).

The Composed PCP	
Ingredients: (i) outer : non-adaptive PCP (PC (ii) inner : PCP & proximity	(Pin, Vin) for a language L with robustness out (Pin, Vin) for the relation R(Vout) with proximity din
	defined as follows: $T_{in}(\rho_i)$ $T_{in}(\rho_2)$ $\int \frac{1}{\sqrt{\rho_1}}$, $\frac{1}{\sqrt{\rho_2}}$,) (x, part); pin)
P(x) 1. Compute outer P(P: Theat := Pout (x) 2. For each pout < {0,13 ^{Cout} : Compute inner P(PP for Pout as Tin [pout]:= Pin ((x, pout), Theat [Qout (x, pout)]) 3. Output TT:= (Theat, (Tin [pout]) pout < {0,13 ^{Cout} }.	$V^{\pi}(x)$ 1. Sample pour $\in \{ \Im_{1} S^{r_{out}} \}$ 2. Check that $V_{in}^{\pi_{out}[\mathcal{Q}_{out} x, p_{out}]}, \overline{W}_{in}^{\pi_{in}[p_{out}]}((x, p_{out})) = 1.$ $X_{in}^{x_{in}}$
<u>Soundness</u> : If $x \not\in L$, except w.p. \mathcal{E}_{out} is \mathcal{E}_{out} - far from $\mathcal{R}(V_{out})[(x, poult)]$. If so (0 Overall soundness error is $\mathcal{E} = \mathcal{E}_{out} + \mathcal{E}_{in}$.	over part = {10,13 ^{fout} the local view Trait [Qout(x, pour)] nd Tout > Sin) then Vin accepts w.r. < Ein over pint [0]? ^{lin} .

Proof Composition Theorem
Ingredients: (i) outer : a non-adaptive PCP (Pour, Vour) for a language L with robustness out (ii) inner : a PCP of proximity (Pin, Vin) for the relation R(Vour) with proximity of
<u>theorem</u> : Then we get a PCP (P,V) for the language L s.t. if Jout 2 Sin
 soundness error: E = Eout + Ein • randomness complexity: r = rout + rin proof length: l = lout + 2^{rout}. Lin (and similarly for prover time: pt = ptout + 2^{rout}. ptin) opery complexity: q = qin (and similarly for verifier time: vt = vtin)
Noreaver: (atter than a language L (if outer is a POPP for a relation R with proximity dout then composed is a POPP for R with proximity dout (why? In construction and analysis consider (u, Tout) instead of just Tout, and for the soundness case consider w that is dout - for from R[X] liather than XX LIR). (if inner PCPP has robustness of then the composed PCP has robustness of n (why? Except with probability Sout, the local view Tout [Rout (x, pour)] is of the from R[Vau)[(x, Bui)]. If so, since of the local view (Tout [Rout(x, pour)], Ti[forit])[Rin((x, part, pin)] is fin-close to accepting with probability of most Ein.

Proof Composition For IOPs?
We can similarly define robust IOPs and IOPs of proximity.
• def: (P,V) is an IOP system for a language L with robustness parameter or if:
$ \bigcirc \underline{Completeness!} \forall x \in L \underset{p}{\mathbb{F}}[\langle P(x), V(x;p) \rangle = i] \geq 1 - \varepsilon_{c} \underset{q}{\operatorname{al}((x,p),q) \in \mathbb{R}(V)} $
② robust soundness: ∀X ∉ L ∀ P Br[\(\(\verline{\verlin{\verline{\verline{\verline{\verline{\verline{\verlin{\\verlin{\\ve{
• <u>def</u> : (P,V) is an IOPP system for a relation R with proximity parameter of if: Econvention:]
$ (I) completenss: \forall (x,w) \in R P[\langle P(x,w), V^{w}(x;p) \rangle = 1] \ge 1 - \varepsilon_{c} $
② proximity soundness: ¥(x, w) if ∆(w, R(x))≥S then ¥P Pr[<p, v<sup="">w(x;p))=1]≤Es</p,>
Ex: if we set $R = \{(IF, L, d), f) f \in RS[IF, L, d]\}$ then we get an IOPP for the Read-Solomon code, of which FRI is an example.
And we can similarly compose IOPS via Interactive Proof Composition, which is more efficient than its non-interactive counterpart thanks to interaction.

Interactive Proof Composition Ingredients: () outer : non-adaptive IOP (Pour, Vout) for a language L with robustness out (i) inner: IOP of proximity (Pin, Vin) for the relation R(Vout) with proximity ofin for composition, the new IOP verifier tells the IOP prover which pout it chose. P(x) V(x)Sample part = { 21,13 Port There is No need interactive part of Vout(X) - Pout to run innor IOP Pest (x) for every porte Solly with Post TTout [Qout (x, port)] Vin ((x, pout)) Pin (IX, Pout)) theorem: Then we get an IOP (P,V) for the language L s.t. if Jour 2 Sin: • Soundness error: E=Eou+ Ein • Hound complexity: k= kou+ kin • Mandamness complexity: r= fout+ fin • proof length: l = lout + 1 · lin (and similarly for prover time: pf = ptout + 1 · ptin) • query complexity: q = qin (and similarly for verifier time: vt = [interaction of Vour] + vtin)

Noresver: [similar statement as in the case of PCPs]