Lecture 16

Foundations of Probabilistic Proofs Fall 2020 Alessandro Chiesa Linear-Size IOPs for Arithmetic Computations We have seen how to trivially adapt the basic PCP for NTIME(T) into an IOP with proof length $T^{1+O(E)}$ and query complixity $(logT)^{O(k)}$. Today we see how to achieve linear proof length for computations over large fields. Recall the following NP-complete language: def: $RICS(F) = \mathcal{D}(u, A, B, C) | \exists z \in F^n s.t. A z \circ B z = C_z \otimes z = (u, w) \text{ for some } w \mathcal{D}.$ mxn matrices $\begin{bmatrix} -a_{1} - \\ -a_{2} - \\ -a_{m} - \end{bmatrix} \begin{bmatrix} 1 \\ -b_{m} - \end{bmatrix} \begin{bmatrix} 1 \\ -b_{m} - \end{bmatrix} \begin{bmatrix} 1 \\ -b_{m} - \end{bmatrix} \begin{bmatrix} 1 \\ -c_{m} - \end{bmatrix} \begin{bmatrix} 1$ theorem: For "large smooth" IF, $RICS(F) \in IVP\left[\mathcal{E}_{c}=0, \mathcal{E}_{s}=0.5, K=O(\log m), \Sigma=F, l=O(m), q=O(\log m), r=O(\log m)\right]$ This achieves linear-size IOPs for arithmetic computations! Note: we cannot conclude that all of NP has linear-size proofs because reductions introduce overheads. Today we assume for simplicity that m=n (# equations = # variables).

Prior Choices of Encoding				
Our recipe to construct PCPs so far has been to set $T = (TT_a, TT_{sat})$ where (D) TTa is (allegedly) the encoding of a candidate assignment [belongs to S:= {Enc(2)} ₂] (2) if TTa is close to Enc(a) for some a, TTat facilitates checking that a is satisfying				
() What encodings did we use for an assignment $A:[n] \rightarrow F$?				
(a) for exp-size PCPs we used linear extensions (aka Hadamard code) exponential				
$Enc(\alpha): \mathbb{F}^{n} \to \mathbb{F}^{n}$ where $Enc(\alpha):=(\langle \alpha, C \rangle)_{C \in \mathbb{F}^{n}}$ $ Enc = \mathbb{F} ^{n}$				
6 for poly-size PCPs we used multivariate low-degree extensions (aka Reed-Muller code) almost polynomial				
$E_{nc}(a): \mathbb{F}^{[n]} \rightarrow \mathbb{F}$ where $E_{nc}(a):= (\mathbb{F}, \{0, 1\}, \log n) - extension of a E_{nc} = n^{\log \mathbb{F} } = n^{\log \mathbb{F} }$				
$E_{nc}(a): \mathbb{F} \xrightarrow{\log n}{\log H } \rightarrow \mathbb{F} \text{ where } E_{nc}(a):= (\mathbb{F}, H, \log n) - extension of a (E_{nc} = n) \xrightarrow{\log H }{\log H } = n^{Ho(e)}$				
Crucially, for a we have linearity test and for a we have (multivariate) low-degree test.				
2) How to lest satisfiability? For @, random combination. For (1), use sumchick for . 8 tensor test everything 3				

A New Choice of Encoding
We seek an encoding with { • constant rate : [Enc(a)] = O([a])
L. constant relative distance: $a \neq a' \rightarrow \Delta(Enc(a), Enc(a')) \ge U(1)$
that lets us execute our recipe of TT=(TTa, TTsat), which in turn means that we need
 a proximity lest: "To close to {Enc(2)32" in few queries an approach for lesting satisfiability (leg. a replacement for sumcheck protocal)
Satisfying the rate & distance alone is lasy (pick any good code over IF).
Additionally satisfying the other requirements is hard. Continue to place our
The new encoding that we use is: univariate low-degree extensions hopes in polynomials!
Enc(a): IF > IF where Enc(a):= Univariate extension of a: H > IF = evaluation of Z a(i) Li, H(X) on IF
Actually we will evaluate on L= @(IHI) rather than IF for more fluxibility.
This encoding is also known as the Reed-Schemen code: relative distance is
This encoding is also known as the Read-Solomon code: $RS[F,L,d] = \{f:L \neq F \text{ s.t. } deg(\hat{f}) \leq d\} = I - \frac{d}{ L } = I (i) \text{ if } L = I (d)$
Today: we temporarily assume that we have a proximity test for univariate extensions, and show how to use this code to construct linear-size IDPs

Univariate Sumcheck [1/3]
The verifier has oracle access to $f: L \neg F$ st. $deg(\hat{f}) \leq d$ and input (F, L, d, H, δ) , and wants to check the claim $\sum_{a\in H} \hat{f}(a) = \delta$. each of these has size $D_{n}(n)$
Attempt 1: guery f at every a EH and add up the answers
What if HnL=\$?
Deriving f(a) for a single a EH requires d+1= Whin overies for interpolation.
Even if H = L, IHI= J2(n) queries is too mony.
[And even if H were small, in the noisy case we would use self-correction, which we don't have.]
<u>Attempt 2:</u> rvn sumcheck protocol for $Z_{aeH^n} \hat{f}(a) = v$ with $n=1$ (e.g. as IP)
The first (and only) message is the $d+1 = DL(n)$ coefficients of \hat{f} :
$(c_{0}, c_{1},, c_{d})$ V^{f} : set $\tilde{f}(x) = \Sigma_{i=0}^{d}$ (ix' and check: $\Sigma_{a\in H} \hat{f}(a) = \delta \hat{f}(s) = f(s)$ for random $s \in L$
This is tanta mount to reading 1 (huge) symbol from the alphabet $Z = IT$
We need new ideas! 5

.

Univariate Sumcheck [2/3] The verifier has oracle access to $f: L \rightarrow F$ st. $deg(\hat{f}) \leq d$ and input (F, L, d, H, δ) , and wants to check the claim $\sum_{aeH} \hat{f}(a) = \delta$.
Step 1: reduce the problem to the case d< [4]
Let $v_{\mu}(x) := \prod_{a \in H} (x - a)$ be the vanishing polynomial of the set H. Divide $\hat{f}(x)$ by $V_{\mu}(x)$: $\hat{f}(x) = \hat{h}(x)v_{\mu}(x) + \hat{g}(x)$ with $deg(\hat{g}) < H & deg(\hat{h}) = deg(\hat{f}) - H $ Observe that $\sum_{a \in H} \hat{f}(a) = \sum_{a \in H} \hat{g}(a)$. Step 2: assume that H is nice and use algebra works for product sets in E ⁿ rather than all sets
$\frac{ \underline{emma} }{ \underline{f} } \text{ if } H \text{ is a subgroup of } H^{+} \text{ then } \sum_{a \in H} \hat{g}(a) = H \hat{g}(a)$ $\frac{ \underline{emma} }{ \underline{f} } \text{ if } i \neq 0 \mod 1H$ $\frac{\underline{f}(a)}{\underline{f} } = \sum_{j=0}^{ H -1} (\underline{w}_{j})^{j} = \sum_{j=0}^{ H -1} (\underline{w}_{j})^{$

Univariate Sumcheck [3/3]	evaluation summation domain degree domain field VVVV claimed
The verifier has oracle access to $f: L \neg F$ st. and wants to check the claim $\sum_{a \in H} \widehat{f}(a) = \delta$	$deg(f) \leq d$ and input (F, L, d, H, v) ,
P((F,L,d,H,x),f)	$V^{f:L\to F}((F,L,d,H,\delta))$
Compute $\hat{h}(x)$ with $dey(\hat{h}) = deg(\hat{f}) - H $ and $\hat{p}(x)$ with $deg(\hat{p}) < H - 1$ s.t. $h: L \rightarrow IF$ $\hat{f}(x) = \hat{h}(x) V_H(x) + (x \hat{p}(x) + \tilde{y}_{ H })$ $p: L \rightarrow IF$	 test that h is S-close to degree d-1HI and that p is S-close to degree 1H1-1 sample s ∈ L and check that f(s) = h(s) • VH(s) + (s p(s) + 8/1H1)
<u>Analysis</u> : If $\sum_{a \in H} \hat{f}(a) = \delta$ then verifier accept D h or p is S-far from (respective) low-degree se \widehat{O} h and \overline{p} both S-close to (unique) h and p	ts -> low-degree test accepts w.p. < ELDT (8)
$f(x) \neq \hat{h}(x) \vee_{H}(x) + (x\hat{p}(x) + \hat{\gamma}_{ H }) \text{ so idential}$ Eor else \hat{f} would sum to x]	

.

Checking Linear Equations
The verifier has oracle access to fig: L->F & degree < d and input (F, L, d, H, M),
and wants to check the claim
$$\begin{aligned}
\widehat{g}|_{H} &\equiv M \cdot \widehat{f}|_{H} \\
\text{and wants to check the claim}
\end{aligned}$$

$$\begin{aligned}
\widehat{g}|_{H} &\equiv M \cdot \widehat{f}|_{H} \\
\text{if } &= M \cdot \widehat{f}|_{H} \\
\end{bmatrix}$$

$$\begin{aligned}
\text{Here the evolution of a univariate simple k damm} \\
\widehat{g}|_{H} &\equiv M \cdot \widehat{f}|_{H} \\
\end{bmatrix}$$

$$\begin{aligned}
\text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate of a univariate simple k damm} \\
& \text{Here the evolution of a univariate of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Here the evolution of a univariate simple k damm} \\
& \text{Her$$

.

IOP for R1CS: Cor	nstruction	View Hin 2 parts: Lu W
$P((u, A, B, C), w)$ Set $Z := (u, w) \in \mathbb{F}^{n}$. Shift was follows: $\forall a \in Haux w(a) = \frac{w(a) - \hat{u}(a)}{V_{Hin}(a)}$. Compute $f_{w} := \widehat{w}^{1}I_{L}$. For each $M \in \{A, B, C\}$: $compute f_{H_{1}} := \widehat{M} \ge I_{L}$. Compute $f_{H_{1}} := \widehat{M} \ge I_{L}$. Compute $f_{H_{1}} := \widehat{M} \ge I_{L}$. For each $M \in \{A, B, C\}$: $\widehat{h}(x) := \frac{\widehat{A} \ge (x) \widehat{B} \ge (x) - \widehat{G} \ge (x)}{V_{H}(x)}$. For each $M \in \{A, B, C\}$: $compute \widehat{g}_{H}(x)$ and $\widehat{h}_{H}(x)$ s.t. $\widehat{F}(x) \widehat{M} \ge (x) - \widehat{F}_{H}(x) \ge (x) = \widehat{h}_{H}(x) V_{H}(x) + x \widehat{F}_{H}(x)$.	$f_{w}, f_{A}, f_{B}, f_{C}, h: L \rightarrow F$ $f: L \rightarrow F \text{ is defined as}$ $f(a) := f_{w}(a) \vee_{Hin}(a) + \hat{u}(a)$ $\Gamma \in F$ For each M \in {A, B, C}: $univariate sumdreck for$ $\sum_{a \in H} \hat{r}(a) \hat{f}_{M}(a) - \hat{f}_{M}(a) \hat{f}(a) = o$ $P_{M}, h_{M}: L \rightarrow F$	V ((u, A, B, C)) • Sample se L at random. • fa(s)fb(s)-fc(s) = h(s) VH(s) • For each Me fA, B, C3: F(s)fh(s)-fh(s) f(s) = hh(s) • VH(s) + 5·ph(s) • Test that: - fa, fb, fc are δ-close to degree 1H1-1 - h is δ-close to degree 1H1-2 - ha, hb, bc are δ-close to degree 1H1-2
[actually the three sumchecks can] be merged into one via random as [fs]	· · · · · · · · · · · · · ·	- ga,go,gc are d-close to degree 141-2

IOP for R1CS: Soundness

Suppose that (u, A, B, c) & RICS.	P((u, A, B, C), w) Set $Z := (u, w) \in \mathbb{F}^{n}$.	$w, f_A, f_B, f_C, h: L \rightarrow F$	V ((u,A,B,C))			
If any of the sent functions is differ then we are dorne. So suppose all are chose. Let fin, fa, fg, fc, ĥ, ĝa, ĥa, ĝa, ĥa, ĝa, ĥa, ĥa, ĥa, ĥa, ĥa, ĥa the (unique) closest low-degree polynomials.	Vale Haix $W(w = \frac{V_{Hin}(A)}{V_{Hin}(A)}$ Compute $f_w := \widehat{W}^{1}I_{L}$. For each ME {A,B,C3: Compute $f_{M} := \widehat{M}_{2}^{2}I_{L}$ Compute $\widehat{f}_{M} := \widehat{M}_{2}^{2}I_{L}$ Compute $\widehat{h}(x) := \frac{\widehat{A}_{2}(x)\widehat{B}_{2}(x) - \widehat{C}_{2}(x)}{V_{H}(x)}$ For each ME {A,B,C3:		Sample $s \in L$ at random. $f_A(s) f_B(s) - f_c(s) = h(s) V_H(s)$ For each $M \in \{A, B, C\}$: $\hat{F}(s) f_H(s) - \hat{\Gamma}_H(s) \hat{F}(s) = h_M(s) \cdot V_H(s) + s \cdot p_H(s)$			
One of the following must be true.	compute $\hat{g}_{\Pi}(x)$ and $\hat{h}_{\Pi}(x)$ s.t. $\hat{F}(x) \hat{M}_{\widehat{\Phi}}(x) - \hat{F}_{\Pi}(x) \widehat{\Phi}(x) = \int_{\hat{H}_{\Pi}(x)} \hat{V}_{\Pi}(x) - \hat{X} \hat{F}_{\Pi}(x)$	· · · · · · · · ·	Test that: - faff, fe are &-close to degree 141-1 - h is &-close to degree 1411-2			
D the Hadamard product condition is violated	$ atcd: \hat{f}_{A} _{H} \circ \hat{f}_{B} _{H} \neq \hat{f}_{C}$ $: \exists M \in \{A, B, C\} \text{ s.t. } \hat{f}_{H} _{H}$	≠ M• Ĵ _H	- ha, hB, hc are 5-close to degree 141-2 - ga, gB, gc are 5-close to degree 141-2			
In case \mathbb{D} : $\hat{f}_{A}(X) \cdot \hat{f}_{B}(X) - \hat{f}_{C}(X) \neq \hat{h}(X) V_{H}(X)$ so the verifier accepts w.p. $\leq \frac{2 H -2}{7 H } + 4S$ degree in polynomial equation functions that are S-far from LA						
In case \mathfrak{O} : except w.p. $\underline{ H - }$ over reft, $\widehat{F}(x)\widehat{f}_{H}(x) - \widehat{f}_{H}(x)\widehat{f}(x) \neq \widehat{h}_{H}(x) + X\widehat{P}_{H}(x)$						
in which case the verifier accepts w.	$p_{1} \leq \frac{2 H -2}{ L } + 48$	Note that input $\hat{f}(x) := \hat{f}_{\omega}(x)$	consistency is accounted for: I Hin (X) + \hat{u} (X)			

IOP for R1CS: Efficiency

 \bigvee ((u, A, B, C)) P((u, A, B, C), w)· proof complexity (in field etts): Set Z:= (N, W) ∈ F.". $f_{w}, f_A, f_B, f_C, h: L \rightarrow F$ Shift was follows: $O(|L|+l_{UT}) = O(n+l_{UT}) = O(n)$ f: L→F is defined as $\forall a \in Haux \quad w'(a) = \frac{w(a) - u'(a)}{V_{Hin}(a)}.$ $f(a) := f_{\omega}(a) V_{Hi}(a) + \hat{u}(a)$ · query complexity: Compute fu:= wilL. For each ME{A,B,C3: For each Me {A,B,C}: $O(1) + 9_{LDT} = O(10gn).$ compute fri = M2 Univariate summark for $\sum_{a\in H} \hat{\Gamma}(a) \hat{f}_{M}(a) - \hat{\Gamma}_{M}(a) \hat{f}(a) = 0$ · Sample se L at random. · round complexity: • $f_{A}(s) + f_{B}(s) - f_{c}(s) = h(s) V_{H}(s)$ $\frac{\rho_{\rm H}, h_{\rm H}; L \rightarrow \mathbb{F}}{\clubsuit}$ • For each Me {A,B,C}: $O(1) + K_{LOT} = O(logn)$ For each $M \in \{4, B, C\}$: $F(s)f_{H}(s) - F_{H}(s)f(s) = h_{H}(s) \cdot V_{H}(s) + s \cdot p_{H}(s)$ · randomness complexity: compute $\hat{q_{H}}(x)$ and $\hat{h_{H}}(x)$ s.t. • Test that: $\hat{F}(x) \stackrel{(x)}{\longrightarrow} w_{\pm}(x) - \hat{F}_{\mu}(x) \stackrel{(x)}{=} w_{\pm}$ - FAIFBIE are 5-close to degree 14/-1 $O(1) + f_{LDT} = O(logn)$ $h_{H}(x) V_{H}(x) - \chi h_{H}(x)$ - h is 0-close to degree 1411-2 · prover time : [*] - ha, hB, hc are f- close to degree 141-2 • verifier time! (*) - ga,ge,ge are of-close to degree 141-2 $O(|U|\log|U) + pt_{LOT} = O(n\log n)$ O(|L|) + v + U = O(n)[*]: Loth pt & vt also include the Krm O(11A11+11B11+11C11) to multiply vectors by A,B,C We have constructed IOPs of linear size for RICS: theorem: For every field IF of size JL(n) that is smooth to for LDT $RI(S(IF) \leq IOP \begin{bmatrix} \mathcal{E}_{s} = 0, \mathcal{E}_{s} = 0.5, \sum = IF, pt = O(nlogn), vt = O(n) \\ K = O(logn), r = O(logn), l = O(n), q = O(logn) \end{bmatrix}$ We are left to construct a univariate LDT with logarithmically-many queries.