Lecture 15

Foundations of Probabilistic Proofs Fall 2020 Alessandro Chiesa

Interactive Oracle Proofs	•	• •	•	• •	•	•
Recall that NP is the model for traditional mathematical proofs:	•	• •	•	• •	•	•
Prover Verifier	•	••••	•	••••	•	•
We have studied two different extensions:	•	••••	•	••••	•	•
IP: add randomness PCP: & oracle access to proof	•	• •	•	• •	•	•
Prover Verifier		· · ·	•	· · ·	•	•
Todays we consider the common extension between the two:	•	••••	•	••••	•	•
Interactive Oracle Proof (IOP)	•	•••	•	•••	•	•
add randomness, interaction, and oracle access to proof	•	• •	•	• •	•	•
Prover Vecifier	•	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	•	•
	•	• •	•	• •	•	2

Definition of IOP	
Let P be an all-powerful prover and V a ppt	interactive oracle algorithm.
We say that (P,V) is an IOP system for a lange completeness error E and soundness error Es if the	Lage L with following helds:
① <u>completeness</u> : ∀xeL Pr[<p(x),v(x;p)>=1]≥</p(x),v(x;p)>	
② <u>soundness</u> : ∀X∉L ∀ P Pr [<p, v(x;p)="">=1]</p,>	ξ ^ε s
Above $\langle A, B \rangle$ denotes this process: $A \rightarrow TT_i$, $m_i \in B^{TT_i}$ and so on until B decides to halt and output.	$A(m_{1}) \rightarrow T_{2}, m_{2} \in B^{T_{1},T_{2}}$
Efficiency mrasures:	
• prover time • alphabet size	• public vs. private coins
 verifier time = proof length (III, I+III, I+II, I+I) round complexity = query complexity (q, +qz+) randomness complexity [each verifier message is random, so all queries can be at the end steraction phase, then query phase]

•

•

•

•

•

.

•

•

•

•

•

•

•

•

.

•

•

.

Upper Bound and Lower Bound
Let IOP be the set of languages decidable via an interactive oracle proof.
lemma: NEXPS IDP
$\frac{\text{pros}f}{\text{an IOP}}: \text{ We have proved that NEXP SPCP and a PCP is a special case of an IOP: } PCP[E_{c}, E_{s}, Z, R, 9, \Gamma,] S = IOP[E_{c}, E_{s}, k=0.5, Z, R, 9, \Gamma,].$
You can think that "NP is to IP like PCP is to IUP".
lemma: IDPS NEXP
proof: We have proved that PCPSNEXP, and any JOP can be "uncolled" into a (very leng) PCP, analogously to how we unrolled an IP into a PCP. That is: $IOP[E_{c,ES},K,\Sigma,(P_{p},L_{v}),] = PCP[E_{c,ES},\Sigma,L=(\Sigma ^{L_{v}})\cdotP_{p}].$
The maximum PCP proof length is $2^{poly(n)} \cdot exp(n) = exp(n)$.
We conclude that IOP=NEXP.

•

•

٠

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

٠

•

•

•

•

•

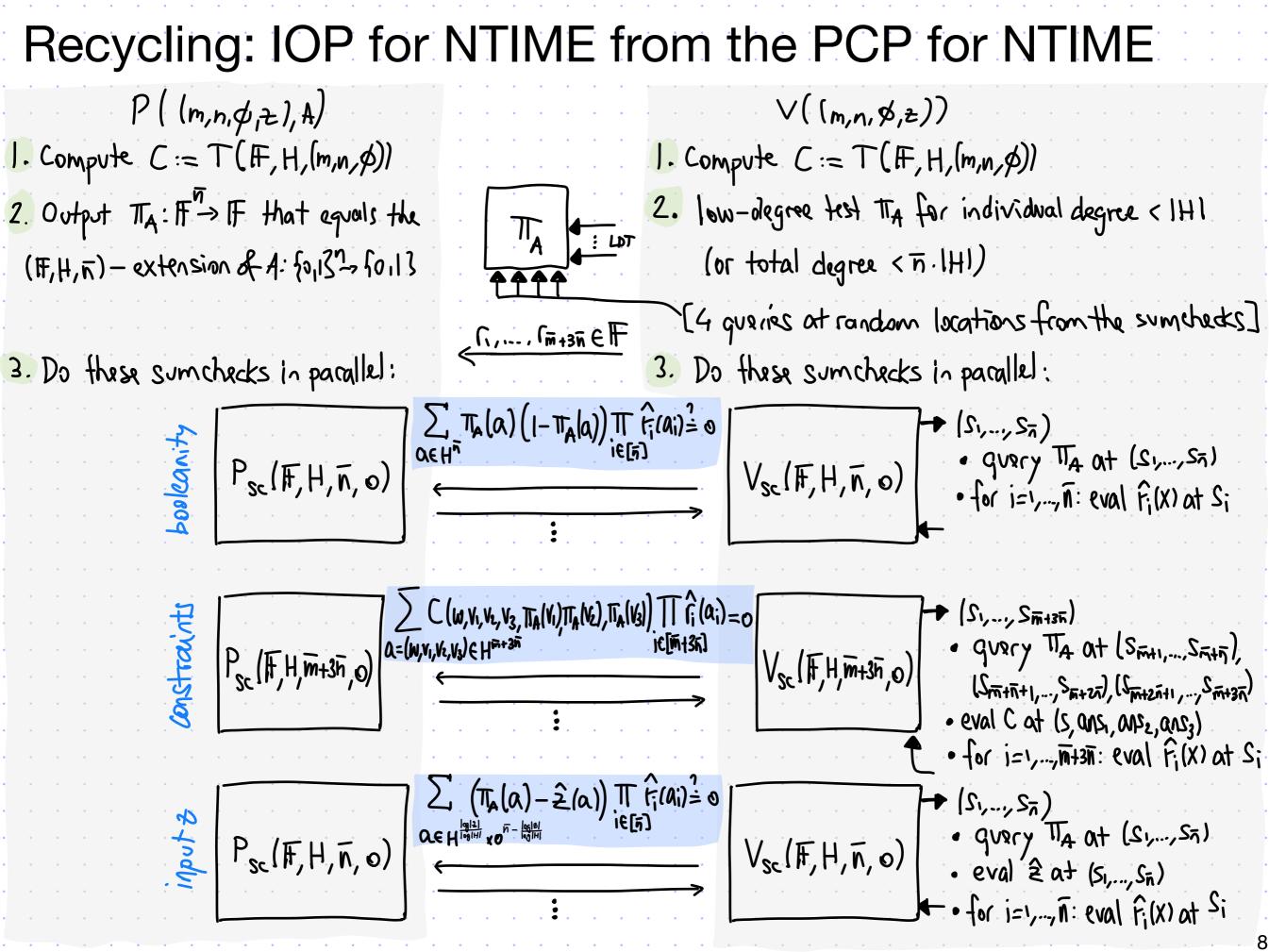
•

•

What are IOPs good for?
We have learned that IOPs do not give us new languages over PGPS. This is ok: we can try to achieve letter parameters for languages in NEXP.
Our goal: leverage interaction to design IOPs that an "more efficient" (shorter proof length, fewer queries, etc.) then state-of-the-art PCPs
But PCPs were an awkward proof model and IOPs are only more awkward. So why care about the goal?
Similarly to PCPs, we can use cryptography to compile IOPs into cryptographic proofs (aka arguments). And if we can design efficient IOPs then we will get cryptographic proofs that are more efficient than from PCPs!
In the next few lectures we will learn how to construct IOPs that achieve parameter regimes that we do not know how to achieve with PCPS_
Currously, despite this, to date use do not have strong separations between IDPS PCPS.

From IOP to Interactive Argument	[1/2]
theorem [informal]	
Suppose L has a public-coin IOP with prover time pt, verifier time vt, query c Then by using cryptography we can construct an interactive argument	for L with
prover time O(pt), verifier time O(vt), communication O(g).	
<u>proof altempt</u> :	· · · · · · · · ·
$P(x) \qquad \qquad$	
2. deduce IOP verifier's queries : $Q := queries \left(V_{\pm 0P}^{T_{1}}, T_{k}(x; r_{1},, r_{k}) \right) \xrightarrow{[T_{1},, T_{k}] Q} V_{\pm 0P}^{[T_{1},, T_{k}] Q} $	· -, Γ _κ) [?]
This is NOT secure because the prover can answer queries based on ri,.	
Idea: extend Kilian's protocol from P(P to IDP by committing to each oracle Merkle tree and then buelly open the relevant locations	Le via 9

From IOP to Interactive	Argum	ient	[2/2]
As in Kilian's protocol, we tely on (collision - resist	ant functions to build Merkle trees	S
P(x)		$V(\mathbf{x})$	
$TT_{1} := P_{IOP}(x), r+_{1} := MT_{h}(TT_{1})$	< h $ (H_1) $	sample CRH: he Hz	· · · · · · ·
$\pi_{2} := _{TOP}^{D}(X, r_{1}), r_{2} := \Pi_{L}(\pi_{2})$	$\leftarrow (1)$	 · · · · · · · · · · · · · · · · · · ·	· · · · · · ·
$\pi_{k} := \int_{TOP}^{D} (X, Y_{1}, \dots, Y_{k-1}), \ (T_{k} := MT_{h} (\pi_{k}))$	$<$ r_2 r_k	 	. .
 deduce IOP verifier's queries : Q:= queries (VIII (X; [1,, [k])) produce outh paths for each ansurr 	ans, paths	Viop (X; (1,, ik) = 1 & check paths	· · · · · · ·
$time(P) = time(P_{IOP}) + O(l)$	Q(glogl)	$time(V) = time(V_{IDP}) + O_{\lambda}(glog l)$	· · · · · · ·
Security analysis involves cryptograp In sum, designing efficient IDPs			· · · · · · · · · · · · · · · · · · ·



Analysis
If IF has size at least IHI-poly(10/1) than the protocol is sound:
$ \mathcal{E}_{s} \leq \underbrace{\mathcal{E}_{LDT}(S)}_{if T_{A} is 6 far} + O(8) + O(\frac{\overline{n} \cdot H }{ IF }) + O(\frac{(\overline{n} + 3\overline{m}) \cdot (H \cdot 0)}{ IF }) + O(\frac{\overline{n} \cdot H }{ IF }) \leq O(1) $ $ South T_{1} escende of 01) queries to T_{A} booleanity constraints input suncheck sumcheck su$
Moreover, if IFI= [HI.pdy(1001) and [HI=1001 the protocol is efficient:
• proof length: $ T_A + SC_2 + SC_2 + SC_3 = FF ^{\overline{h}} + O(\overline{h} \cdot H) + O((\overline{m} + 3\overline{h}) \cdot H \cdot \emptyset)$ = $ F ^{\frac{n}{\log H }} + O(\frac{m+n}{\log H } \cdot H \cdot \emptyset) = (H \cdot poly(\emptyset))^{\frac{n}{\log H }} = 2^{\frac{\log H + O(\log \emptyset)}{\log H }} = 2^{\frac{\log H + O(\log \emptyset)}{\log H }} = 2^{(1+O(\frac{\log \emptyset }{\log H })) \cdot n} = (2^n)^{(1+O(E))}$
• query complexity: $9_{407} + O(1) + O(\overline{n} - H) + O((\overline{m} + 3\overline{n}) \cdot H \cdot p) + O(\overline{n} \cdot H) = O((m+n) H \cdot p) = p ^{O(\frac{1}{2})}$
 Verifier time: ELDT + poly (n, IHI) + poly (Im + 3n), IHI (101) + poly (n, IHI, 121) = poly (1012, 121)
The reduction from NTIME(T) to OSAT can be improved to achieve $n = \log T + O(\log \log T)$, $m = O(\log T)$, $ \emptyset = poly(\log T)$ which yields
$l = T^{1+O(\varepsilon)}, q = (\log T)^{O(\frac{1}{\varepsilon})}, pt = poly(T), vt = poly(1\times1, (\log T)^{\frac{1}{\varepsilon}})$

Towards Efficient IOPs We have shown (up to the improved reduction from NTIMECT) to DSAT) that theorem: For every time function T: N > N with T(n)=D(n) and YE>0 $\text{NTIME}(T) \leq \text{IOP} \begin{bmatrix} \mathcal{E}_{s} = 0, \mathcal{E}_{s} = 0.5, \sum_{i=1}^{n} \mathcal{E}_{0,i} \end{bmatrix}, \text{pt} = \text{poly}_{\varepsilon}(T), \text{vt} = \text{poly}_{\varepsilon}(n, \log T) \\ l = T^{1+O(\varepsilon)}, q = (\log T)^{O(\varepsilon)}, \quad r = \text{poly}_{\varepsilon}(\log T) \end{bmatrix}$ Without much effort, we reduced proof length significantly! Q: can we reduce proof length even further (e.g. to linear)? A serious obstack to improving proof length is that we are encoding assignments vior the multi-variate low-degree extension (also know- as the Read - Multer code), which inheantly incurs a polynomial blowup: $|\mathbb{F}|^{\overline{n}} \ge (\overline{n} \cdot IHI)^{\frac{n}{\log|H|}} = 2 \frac{\log|H| + \log n - \log\log|H|}{\log|H|} = (2^n)^{(1 + \frac{\log n - \log\log|H|)}{\log|H|}} = (2^n)^{H - \log(H)} = (2^n)^{H - \log(H)}$ To do better, we will change how we encode assignments. Reason for optimism: we are severely underusing the IOP model, as the prover sends a proof oracle in the first round only. We should send oracles in more rounds!