Lecture 14

Foundations of Probabilistic Proofs Fall 2020 Alessandro Chiesa

PCP for NTIME
We have constructed PCPs for NP and NEXP:
$\begin{split} NP &\subseteq PCP \left[\mathcal{E}_{e} = 0, \mathcal{E}_{e} = 0.5, \sum_{i} = \{0, 1\}, \mathcal{L} = \exp(n), q = O(1), r = \operatorname{poly}(n) \right] \\ NP &\subseteq PCP \left[\mathcal{E}_{e} = 0, \mathcal{E}_{e} = 0.5, \sum_{i} = \{0, 1\}, \mathcal{L} = \operatorname{poly}(n), q = \operatorname{poly}(\operatorname{logn}), r = O(\operatorname{logn}) \right] \\ NEXP &\subseteq PCP \left[\mathcal{E}_{e} = 0, \mathcal{E}_{e} = 0.5, \sum_{i} = \{0, 1\}, \mathcal{L} = \exp(n), q = \operatorname{poly}(n), r = \operatorname{poly}(n) \right] \\ \end{split}$
Today we construct a PCP for NTIME:
<u>Heorem</u> : For every time function $T: \mathbb{N} \rightarrow \mathbb{N}$ with $T(n) = \mathbb{O}_{n}(n)$, $NTIME(T) \leq P(P \begin{bmatrix} \mathcal{E}_{s} = 0, \mathcal{E}_{s} = 0.5, \sum = \{0, 1\}, pt = poly(T), vt = poly(n, logT) \\ l = poly(T), q = poly(logT), r = poly(logT) \end{bmatrix}$
If we set T=poly(n) then we get If we set T=exp(n) then we get More generally, the theorem shows that the time complexity of the POP prover and PCP vecifier can "scale gracefully" with the (non-deterministic) complexity of the language.
Let's revisit ideas from lost time to see what we can recycle.

An NTIME-Complete Problem
$\frac{def:}{def:} OSAT := \left\{ (m,n,\phi,z) \middle \begin{array}{l} m,n \in \mathbb{N} \text{ and } \phi: \{o_{1},i\}^{m+3n+3} \rightarrow \{o_{1},i\} \text{ is a boolean formula } s.t. \\ \exists A: \{o_{1},i\}^{n} \rightarrow \{o_{1},i\} \text{ for which } A _{\{o_{1},i\}^{\log z } = 2 \text{ and } formula \\ \forall w \in \{o_{1},i\}^{m} \forall V_{1},V_{2},V_{3} \in \{o_{1},i\}^{n} \phi(w,V_{1},V_{2},V_{3},A(V_{1}),A(V_{2}),A(V_{2})) = 0 \end{array} \right\}.$
We argue that OSAT is NTIME(T)-complete under poly(XI, logT)-time reductions.
claim: For every language LENTIME(T) there is a poly(M, logT)-time algorithm R s.t. $\forall x$: \square R(x) outputs an OSAT instance (m,n,ϕ,z) with $m,n=O(logT)$ and $ \phi =poly(logT)$ $\bigotimes x \in L$ iff $R(x) \in OSAT$
<u>proof</u> : Analogous to proof that OSAT is NEXP-complete under poly(al-time reductions, but we need to explicitly keep track of computation size & separate out the input. Apply Cook-Levin Theorem to a T-time non-deterministic machine M that decides L on inputx, to obtain a poly(logT)-size accuit D s.t., for n=O(logT), x \in L iff $\exists A: \{o, 1\}^n \rightarrow \delta 0.13$ s.t. (i) $A _{\{o_1\}} _{bolk} on-logen \equiv x$ (ii) $\forall v., v_2, v_3 \in \{o_1\}^n \forall c., c_2, c_3 \in \{o_1\}^s D$ ($v_1, v_2, v_3, c., c_3, c_3$) $\land (\frac{13}{2}, A(v_1) \oplus c_i) = o$ Then apply (look-Levin Theorem to D to get $poly(DD)-size$ formula ψ and then set $\phi(u, v_1, v_2, v_3, c_1, a_2, a_3):= \psi(u', v_1, v_2, v_3, c_1, c_2, c_3) \land (\frac{13}{2}, a_1 \oplus c_1)$ where $w=(w, c_1, c_3, c_3) \in \{o_1\}^m$ and $w:=m^1+3$.

•

•

• •

Problem with PCP for NEXP

.

Here is the PCP	$P((m,n,\phi),A)$	$\bigvee((m,n,\emptyset))$
for NEXP from	1. Output $T_A: \mathbb{F}^n \to \mathbb{F}$ that equals the	Transformed and the formatter $\widehat{\varphi} := T(F, (m, n, \phi))$ for F of size poly(1001) $T_{A} = \frac{2}{3}$. 2. Sample $f_{1,,f_{n}} \in F \otimes f_{n}$ sunded for daim
last time ->	multilinear extension of A: fo,132 fo,13 2. For every (1,, (n eff:	$\sum_{\alpha_{i},\dots,\alpha_{n}\in \widehat{\gamma}_{i},i,j} \pi_{A}(\alpha) \left(1-\pi_{A}(\alpha)\right) \prod_{i\in[n]} \widehat{F}_{i}(\alpha_{i}) = 0$
	output sumcheck proof $T_{5c}^{(1)}[\Gamma_1,,\Gamma_n]$ for $\sum_{a_1,,a_n \in \{0,1\}} T_{a_1}(a)(1-T_{a_1}(a_1)) T_{a_1}^{-1}(a_1) = 0$ $i\in [n]$	$ \left\{ \begin{array}{c} \Pi_{Sc}^{(1)}[\Gamma_{i,,}\Gamma_{n}] \\ \end{array} \right\} \stackrel{\scriptstyle (i)}{\longleftrightarrow} \begin{array}{c} V_{Sc}(F, \{o_{1}\}, n, o) \\ \hline \\ & $
· · · · · · · · · · ·	· · · · · · · · · · · · · · · · ·	3. Sample Fi,, Fmt3hETF & run sundreck for daim:
· · · · · · · · · · · ·	3. for every (1,, (m+3n EF: output sumcheck proof TISC [1,, m+3n]	$\sum_{A=(W,V_1,V_2,V_3)} \emptyset(W,V_1,V_2,V_3,TI_A(V_1)TI_A(V_2),TI_A(V_3)) \prod_{i \in [m+3n]} f_i(a_i) = 0$
· · · · · · · · · · ·	$f_{O} \cap \sum_{\substack{\alpha \in \{\omega, v_1, v_2, v_3, TA}(v_1) TA}(v_2), TA}(v_3) \prod_{i \in [m+3h]} \hat{f}_i(\alpha_i) = o $	$ \left[\mathbb{I}_{Sc}^{(2)} \left[\mathbb{I}_{j,\dots,j} \mathbb{I}_{m+3n} \right] \right\} \stackrel{\underset{\scriptstyle \leftarrow}{\leftarrow}}{=} \left[\mathbb{V}_{Sc} \left(\mathbb{F}, \{ \mathfrak{d}_{1} \}, M + 3n, 0 \right) \right] \\ \left[\mathbb{I}_{j,\dots,j} \mathbb{I}_{m+3n} \in \mathbb{F} \right] \left(\mathbb{S}_{i,\dots,j} \mathbb{S}_{m+3n} \right) \right] $
1. explicit input		• guary TIA at (Sm+1,, Sm+n), (Sm+n+1,, Sm+2n), (Sm+2n+1,, Sm+3n) • for i=1,, m+3n : eval f:(x) at S;
Instances of OSAT So: (arithmetization	now contain an explicit input: 1 of OSAT has to be adapted	(m,n, y, Z). evaluate & at (s, ans, ans, ans, ans, ans, ans, ans, an
	r will need an extra ched (for	input consistency
2. PCP string is too	logn (O(logT)) loglog	T+O(1) loglogT+O(1) = poly(T)
$ \pi \ge F \ge n'$	$= (2)^{\circ} = (2)^{\circ}$	= poly(1)

4

Part 1: Arithmetization of OSAT	[1/2]
 Claim: there is a transformation T s.t. ① T(F,H,(m,n,\$)) runs in poly (1\$\mathcal{P}\$1,1H1,log \$F1)-time and outputs an circuit C:F^{m+3n+3}->F of size & total degree poly(1\$\mathcal{D}\$),1H1), with m:= m/log \$H1 and n:= 0.2 (m,n,\$\mathcal{\mathcal{P}\$},\$\mathcal{E}\$) = 0SAT iff ∃ Â:Fⁿ >F of individual degree <1H1 s.t. i) Â is boolean on Hⁿ ii) ¥w∈H^m ¥v₁,v₂,v₃∈Hⁿ C(w,v₁,v₂,v₃,Â(v₁),Â(v₂),A(v₂),A(v₂),A(v₂),A(v₂),A(v₂),A(v₂),A(v₂),A(v₂),A(v₂),A(v₂),A(v₂),A(v	$\frac{n}{\log H }$
<u>proof</u> : We proved the case $H = fo_1 i$ (where $\overline{m} = m, \overline{n} = n$, and \widehat{A} is multilinear) and no input consist by setting $C := \widehat{\beta}$ where $\widehat{\beta} := arithmetize(F, \overline{\beta})$. $[x_ny \mapsto x_y, x_vy \mapsto -(1-x)(1-y), \overline{x} \mapsto -(1-x)(1-y), \overline{x} \mapsto -(1-x)(1-y)]$. This is not enough when $H \neq fo_1 i i$:	stency, x]
Ø works on boolean inputs but C receives tuples & elements from H. Idea: convert from H to boolean via additional airwits Let bin: H → Fo,13 ^{log H} be an efficiently computable bijection. Define: • PH;: H→ Fo,13 is the i-th bit function PH; (a) := bin (a); • PH;: FF→FF is the low-digree extension of PH;	· · · · · · ·
Note that degliphick (IHI and print can be evaluated in poly(IHI) field operations.	

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Part 1: Arithmetization of OSAT [2/2]
 Claim: there is a transformation T s.t. ① T(F,H, (m,n,\$)) runs in poly (1\$\nothermole\$1,1H1,log \$F1)-time and outputs an circuit C: F^{m+3\$\nothermole\$1}} ->F of size & total degree poly(1\$\nothermole\$),1H1), with m:= m/log \$H1 and n:= n/log \$H1 ② (m,n,\$\nothermole\$,2) \in OSAT iff ∃ Â: F^m >F of individual degree <1H1 s.t. i) Â is boolean on Hⁿ ii) ¥ w \in H^m ¥ v₁, v₂, v₃ \in Hⁿ C(w,v,v₂, v₃, Â(v₁), Â(v₂), Â(v₃)) = 0
proof: [Continued]
Define: • PH;: H- E0,13 is the 1-th bit function PH; (a) := bin (a); • PH;: FF>FF is the low-degree extension of PH;
The circuit we use is Lits of W bits of Vk
$C(w, V_1, V_2, V_3, \alpha_1, \alpha_2, \alpha_3) := \bigotimes_{j=1,, m} \left(\left(P_{H,i}(w[j]) \right)_{\substack{i=1,, m}} \left(\left(P_{H,i}(V_{ir}[j]) \right)_{\substack{j=1,, m}} \right)_{\substack{j=1,, m}} \right)_{\substack{i=1,, m}} \left(\left(P_{H,i}(v_{ir}[j]) \right)_{\substack{j=1,, m}} \right)_{\substack{j=1,, m}} \right)_{\substack{k=1, 2, 3}} \right)$
The total degree of (is $\leq \deg_{1+1}(\mathcal{D}) \cdot H \leq \mathcal{D} \cdot H = poly(\mathcal{D} , H).$
The size of C is also poly (101,141).
Completeness and soundness are similar to the case H= 10,13, because by actracting bits we can "convert" from HT & HT to Eq.13 R Eq.13".

Part 2: Zero-on-Subcu	ube Test	
We have already solved this problem f	er any hypercobe:	individual degree < d
P(𝔽, H, ⊾, f)	$f _{H^n} \stackrel{?}{=} O$	$\nabla^{f:\mathbb{F}^{n}} \mathbb{F}(\mathbb{F},\mathbb{H},\mathbb{N})$
For every ti,, rn EFF: Output eval table The [ri,, rn]		Sample ri,, in EF. Run sumcheck for the claim
of IP prover for sumchack daim $\sum_{\substack{\alpha_1,\dots,\alpha_n \in H}} f(\alpha_1,\dots,\alpha_n) \prod_{\substack{\alpha_1 \in I}} f_{i_1}(\alpha_{i_1}) = 0$	$\overline{Sc}[\overline{\Gamma_1, \dots, \Gamma_n}]$	∑ f(a,,a,) TT f; (a;)=0 a,,a, ∈H V≤(IF, H, n, 0) field? / 1 1 0 0(n. (IH1+d)) elts from T5c domain 1 -1 elt from f
$\frac{P r \log f}{ T_{sc} } = F_{f} ^{2} \cdot O(F_{f} ^{2} \cdot (H + d))$ $= F_{f} ^{O(n)} \cdot (H + d)$	Γ _{ν"γ} helf	<pre>#vars / running time: claimed sum - poly (n, 1H1, d) from Vsc - poly (n, 1H1) from Vsc - poly (n, 1H1) from (Si,, Sn) f(Si,, Sn). IT f; (Si) icen) 1. query f at (Si,, Sn) 2. for i=1,, n: evaluate f:(x) at Si</pre>
Completeness error is O. Soundness error	$\lambda s O(\underline{n \cdot (1H1+d)}) O(\underline{n \cdot (1H1+d)})$	• • • • • • • • • • • • • • • • • • • •

Part 3: Inpu	t Consistency Test
	s to f: IF > IF of individual degree d and input 2: Ht => IF for OCK< N,
chuck Hhat	$f _{H^k \times 0^{n-k}} \equiv 2$. (Assume WLOG OEH.)
Then add more vo	be the low-degree extension of Z. (It has individual degree < [H].) wighter trivially: $\hat{z}(K_1,, X_n) := \hat{z}(X_1,, X_k)$. In the evaluated at any $(r_1,, r_n) \in \mathbb{F}^n$ in time poly ([H] ^k) operations.
	Mouring zero-on-subcube problem:
	$\left(\hat{f}-\hat{z}\right)\Big _{H^{K}\times 0^{n-K}} = 0.$
· · · · · · · · · · · · · ·	
· · · · · · · · · · · ·	
· · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·

Putting the Parts Together

.

$$P\left(\left(m,n, \varphi_{1, E}\right), \varphi_{1, E}\right)$$

$$P\left(\left(m,n, \varphi_{1, E}\right), \varphi_{1, E}\right)$$

$$O. Compute C := T(F, H, (m,n, \beta))$$

$$I. Compute C := T(F, H, (m,n,$$

.

Analysis	$P((m,n,\phi_i \neq 1, A))$	$\bigvee((m,n,\emptyset,z))$
	O. Compute $C := T(F, H, (m, n, p))$	1. Compute $C := T(F, H, (m, n, p))$
We wish to check that:	1. Output TA: FF → IF that equals the	The I & run sundeck for doint
	(IF,H,)- extension of A: {0,137- f0,13	$T_{A} = \frac{2}{3}$ $\sum_{n=1}^{2} T_{A}(\alpha) (1 - T_{A}(\alpha)) T_{A}(\alpha) = 0$ $a \in H^{\frac{1}{2}}$
• Iff (= poly ([HI, Ø])	2. For every (1,, (R EF:	
• 141= poly (101)	output sumcheck proof TSc"[[,r]	$\left\{ \exists_{Sc} [f_{j, \dots, j} f_{n}] \right\} \longleftrightarrow \begin{bmatrix} \forall c (c_{n} / c_{n} /$
make the protocol	$for \sum_{\alpha \in H^{n}} \pi_{A}(\alpha) (1 - \pi_{A}(\alpha)) \pi \widehat{f}_{i}(\alpha_{i}) = 0$	(Si,, Sin) · givery The at (Si,, Sin) (i,, fine for i=1,, fi: eval fi(x) at Si
		3. Sample Fi,, Fm+3RE IF & run sundeck for daim:
sound and efficient.	3. For every (1,, (m+3) E Fr: a a	$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$
Recall that, reducing	output sumcheck proof $TI_{SC}^{(2)}[\Gamma_{1,,1}, \overline{\Gamma_{17+3}n}]$	$(\Box = (W, V_1, V_2, V_3) \qquad IC[\overline{m} + 3\overline{n}]$
from NTINE :	$f_{\mathcal{F}}^{\mathcal{F}} \sum_{\substack{\alpha \in (w,v_1,v_2,v_3) \in (v_1,v_2,v_3,T_A(v_1)) \in (v_1,v_2,v_3) \\ \in H^{\frac{1}{10}+3n}}} C(w,v_1,v_2,v_3,T_A(v_1))T_A(v_2),T_A(v_3)) \prod_{i \in [w_1,v_3,v_3]} \widehat{f_i}(\alpha_i) = 0$	
m, n = O(logt), g = poly()		
• • • • • • • • • • • • •		• guary TIA at $(S_{m+1,}, S_{m+\overline{n}}), (S_{m+\overline{n}+1,}, S_{m+2\overline{n}}), (S_{m+2\overline{n}+1,}, S_{m+2\overline{n}})$ • for i= 1,, $\overline{m+3\overline{n}}$: eval $\widehat{r_1}(x)$ at Si • evaluate C at $(S_1 as_2, as_3)$
· soundness error: EINT(S)	$+S+\frac{\text{poly}(\overline{m},\overline{n},\text{IHI}, \underline{m})}{\text{IF}} = O(1)$	• evaluate C at $(s_{0}as_{1}, as_{2}, as_{3})$
· · · · · · · · · · · · · · ·	IF]	4. low-degree test TTA for total degree T-H
• prost length:	· QUECY CON	nplexity
$ T_A + T_{sc}^{(l)} + T_{sc}^{(2)} $		
$= \mathbf{F} ^{\overline{n}} + \mathbf{F} ^{\overline{n}} O(\mathbf{F} ^{\overline{n}} \mathbf{H}) + \mathbf{F} ^{\overline{\mathbf{M}}}$		$H[+(m+3\bar{n})\cdot \beta \cdot H + g_{LOT}$
	$\frac{n+n}{2}$	
$= \mathbf{F} ^{O(\widehat{\mathbf{m}} + \widehat{\mathbf{n}})} \mathbf{H} \cdot \mathbf{S} = \mathbf{F} ^{O(\frac{\mathbf{H}}{2})}$	$\mathcal{S}[\mathcal{H}] \cdot [\mathcal{H}] \cdot [\mathcal{D}] = \operatorname{poly}(\mathcal{D})$	
= $poly(H , p)^{O(\frac{m+n}{\log H })}$	$2^{O(m+n)} = poly(log)$	= poly(10/121)
$= 2^{O(1 \cdot ST)} = poly(T)$		
$= \chi = hold(1)$		= poly (1x1, logT)

More on Proof Length
The proof length in the PCP for $NTIME(T)$ described so far is at least T^6 . Let's see why:
$ \mathcal{T}_{A} + \mathcal{T}_{sc}^{(l)} + \mathcal{T}_{sc}^{(2)} = \mathcal{F} ^{\tilde{n}} + \mathcal{F} ^{\tilde{n}} \cdot O(\mathcal{F} ^{\tilde{n}} \cdot$
Here are the culprits:
1. The reduction from zero-on-subcube to sumcheck causes a quadratic blowup:
to prove $f _{H^n} \equiv 0$ the prover includes, for every choice of randomness $r \in \mathbb{F}^n$,
a suncheck proof TSr[1] of size at least IFIn
2. The reduction from NTIME (T) to OSAT causes a cubic blow up:
there are JL(T) variables in the computation trace of the machine
and we consider all possible 3CNF clauses formed by these
Intuitively, reducing proof length makes a PCP harder and harder to construct.
Fundamental question:
How short can a PCP be?

Trading Shorter Proof for More Queries
With several additional ideas, today's blueprint leads to this theorem:
theorem: For every time function T: N > N with T(n)=12(n) and ¥E>0
$NTIME(T) \leq P(P\left[\begin{array}{l} \mathcal{E}_{e}=0, \mathcal{E}_{s}=0.5, \sum = \{0,1\}, pt = poly_{\epsilon}(T), vt = poly_{\epsilon}(n, logT) \\ l = T^{1+O(\epsilon)}, q = (logT)^{\frac{1}{\epsilon}}, (= poly_{\epsilon}(logT) \end{array}\right]$
Each of the two culprits (an be eliminated;
1. Use an alternate reduction from zero-on-subcube to suncheck:
lemma: Let $2_{H}(x) = \prod_{q \in H} x-q $ be the vanishing polynomial of H, and let $f: F' \to F$ be a polynomial of individual degree $\leq d$.
Then $f _{H^n} = 0$ iff $\exists g_1, \dots, g_n : \mathbb{F}^n \to \mathbb{F}$ of individual degree $\leq d s.t.$
$f(X_{1},,X_{n}) \equiv \sum_{i \in [n]} Z_{H}(X_{i}) g_{i}(X_{1},,X_{n})$
2. Use routing techniques to reduce NTIME(T) to a smaller zero-on-suburle problem:
$\forall w \in \{0, 13^{m} \ \phi(w, \phi_{1}(w), \phi_{2}(w), \phi_{3}(w), A(\phi_{1}(w)), A(\phi_{2}(w)), A(\phi_{3}(w))) = 0$
· · · · · · · · · · · · · · · · · · ·

.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

.