Lecture 13

Foundations of Probabilistic Proofs Fall 2020 Alessandro Chiesa

PCP for NEXP
So far we constructed PCPs for NP:
$\begin{split} NP &\subseteq PCP \left[\mathcal{E}_{s} = 0, \mathcal{E}_{s} = 0.5, \sum_{n=1}^{\infty} \mathcal{E}_{0,1} \right], \begin{array}{l} l &= \exp(n), q = O(1), r = \operatorname{poly}(n) \end{array} \\ NP &\subseteq PCP \left[\mathcal{E}_{s} = 0, \mathcal{E}_{s} = 0.5, \sum_{n=1}^{\infty} \mathcal{E}_{0,1} \right], \begin{array}{l} l &= \operatorname{poly}(n), q = \operatorname{poly}(\log n), r = O(\log n) \end{array} \end{split}$
Today we construct a PCP for NEXP:
<u>Heorem</u> : NEXP \leq PCP [$\varepsilon_{c}=0, \varepsilon_{s}=0.5, \Sigma=\{0,1\}, l=\exp(n), q=\operatorname{poly}(n), r=\operatorname{poly}(n)$]
<u>Remarks:</u>
 l=exp(n) is the correct regime since the witness and computation have size exp(n) q=poly(n) is exponentially smaller than witness and computation size as we see later in the course, one can even achieve q= O(1) !] the PCP verifier runs in poly(n) time, exponentially smaller than original computation?
This is the first instance of "verification faster than computation" that we see for PCPs!

.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

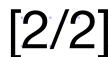
•

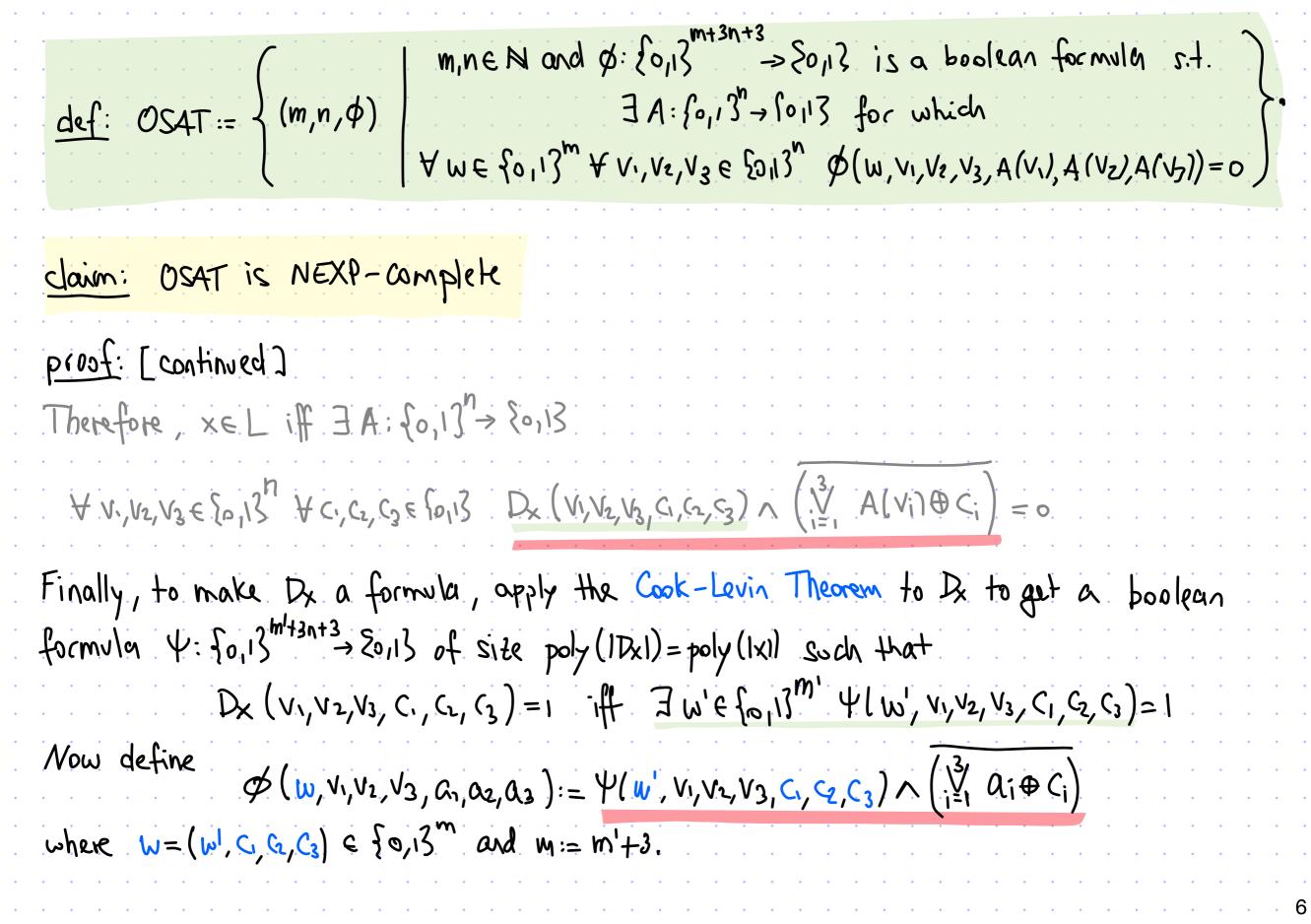
Towards Sublinear Verification
To achieve sublinear verification we must () consider a problem where Idescription [[computation]<br (2) design a PCP verifier that only uses description (does not "unsoll" the computation)
 We have seen examples when constructing IPs for "large classes": Ex: in #SAT we are given a boolean formula \$\overline{\sigma}: \So_113ⁿ -> \So_113 and veN, and must check
In our lectures on PCFs we have not get ansidered such problems. We have built PCPs for NP-complete problems where $ description \sim computation $: $QESAT(FF) = \{(p_1,,p_m) \mid \exists a \in F^n : f, p_1(a) = = p_m(a) = 0\}$ $RICS(FF) = \{(v, A, B, C) \mid \exists z \in F^n : f, A \ge 0 B \ge = C_2 \otimes z = (v, w) \text{ for some } w \}$.

Towards Sublinear Verif	ication
To achieve sublinear verification u D consider a problem where Ides 2 design a PCP verifier that only	
2) The PCPs that we designed so PCP for DESAT	far operate on the computation, not the description:
$P((p_{1},,p_{m}), \alpha) :=$ $I. \text{ for every } r \in H_{e}^{S_{a}} :$ $p_{r}^{-} T(p_{1},,p_{m}; r)$ $T_{Sc}(r] := eval table$ $for sunchack to show p(\alpha) = 0$ $\cdot \text{ output } T_{Sc}(r]$ $2. \text{ output } \widehat{\alpha} : \mathbb{F}^{S_{v}} \cdot \mathbb{F}$ $[LDE \ of \ \alpha: [n] \to \mathbb{F}]$ T_{a}	$V((p_{1},,p_{n})):=$ 1, Somple $r \in H_{e}^{Se}$ and compute $p_{r}^{:=} \sum_{\alpha \in j_{1},,j_{Se} \in H_{e} } Computing p_{r}$ and evaluating \hat{C}_{r} and evaluating \hat{C}_{r} and evaluating \hat{C}_{r} takes poly(m,n) time $\sum_{\alpha,\beta \in H_{v}^{S}} \hat{C}_{r}(\alpha,\beta) \hat{\alpha}(\alpha) \hat{\alpha}(\beta) = 0$ $x,\beta \in H_{v}^{S}$ $V_{sc}(F,H_{v},2s_{v},0)$ 3. run low-degree test on The $y_{v}(F,S_{v},S_{v} H_{v})$ 4

A NEXP-Complete Problem [1/2	
$\frac{def:}{def:} OSAT := \begin{cases} (m,n,\phi) & m,n\in N \text{ and } \phi: \{0,1\}^{m+3n+3} \rightarrow \{0,1\}^{n} \text{ is a boolean formula } s.t. \\ \exists A: \{0,1\}^{n} \rightarrow \{0,1\}^{n} \text{ for which} \\ \forall w \in \{0,1\}^{m} \forall V, V_{2}, V_{3} \in \{0,1\}^{n} \phi(w,V_{1},V_{2},V_{3},A(V_{1}),A(V_{2}),A(V_{3})) = 0 \end{cases}$	
<u>claim:</u> OSAT is NEXP-complete	•••
<u>proof</u> : Suppose $L \in NEXP$ and let M be a NEXP machine deciding L. Let x be an input to M. By the Cook-Levin Theorem, there is a 30NF $\overline{\Phi}_{x}$ s.t.	· · ·
(1) Φ_x is satisfiable iff M accepts x (2) Φ_x has $Nv = 2^{poly}^{(n)}$ variables and $Nc = 2^{poly}^{(n)}$ clauses — set $n := \log Nv$ (3) there is a poly((x)) - Size circuit $D_x : [v_1] 3^{3n+3} \rightarrow [v_1] 3$ that specifies Φ_x 's clauses: $D_x(v_1, v_2, v_3, c_1, c_2, c_3) = 1$ iff Φ_x contains clause $V_1 = V_1$ (X $v_1 \oplus C_1$)	
Therefore, $x \in L$ iff $\exists A: \{o, 1\}^n \rightarrow \{o, 1\}$	• •
$\forall v_{v_{1}}v_{2}, v_{3} \in \{o_{1}, v_{3}\} \forall c_{v_{1}}c_{2}, c_{3} \in \{o_{1}, v_{3}\} D_{x}\left(v_{1}, v_{2}, v_{3}, c_{1}, c_{2}, c_{3}\right) \wedge \left(\bigvee_{i=1}^{3} A(v_{i}) \oplus c_{i}\right) = 0$	· · ·

A NEXP-Complete Problem





Part 1: Arithmetization of OSAT
<u>claim</u> : there is a polynomial-time transformation T s.t.
() $T(F, (m, n, \phi))$ outputs a cirwit $\hat{\phi}: F^{m+3n+3} \rightarrow F$ of total degree $ \phi $ (m, n, ϕ) $\in OSAT$ iff \exists multilinear $\hat{A}: F^n \rightarrow F$ s.t. \hat{A} is booken as $\{o, i\}^n$ and $\forall w \in \{o, i\}^m \forall v_i, v_2, v_3 \in \{o, i\}^n \hat{\phi}(w, v_1, v_2, v_3, \hat{A}(v_1), \hat{A}(v_3)) = 0$
Zero on subcube testing
The transformation T outputs $\beta = arithmetize (F, \beta)$. [Recall: $x \land y \mapsto x \land y \mapsto -(I-x)(I-y), \overline{x} \mapsto -\overline{x}$] This ensures that the total degree of β is $\leq \beta $ and $\beta \equiv \beta$ on every boolean input.
<u>Completeness</u> : if $A: \{0, 13^n \rightarrow \{0, 13\}$ is a witness for $(m, n, \phi) \in OSAT$ then $\hat{A} = multilinear$ extension of A^n satisfies the bodeanity conduction and the vanishing conduction
Soundness: if $(m,n,\phi) \notin OSAT$ then \forall multilinear $\hat{A}: \mathbb{H}^n \to \mathbb{H}$ either \hat{A} is not boolean an $\{0,1\}^n$ or $\exists w \in \{0,1\}^m \exists v_1, v_2, v_3 \in \{0,1\}^n \hat{\otimes}(w, v_1, v_2, v_3, \hat{A}(v_1), \hat{A}(v_2), \hat{A}(v_3)) \neq 0$

Part 2: Zero-on-Subcube Test	[1/2]
Given oracle access to a low-degree $f: \mathbb{F}^n \to \mathbb{F}$, check that $f _{\mathbb{H}^n} \equiv \mathcal{O}$.	
<u>Idea</u> : teduca to sumcheck	
Let int: H -> {0,1,, 1H1-13 be an efficiently computable bijection.	
Consider the polynomial $g(x_1,, x_n) := \sum_{\substack{a_1,, a_n \in H}} f(a_1,, a_n) \chi_1^{int}(a_1) \dots \chi_n^{int}(a_n)$	· · · · ·
If $f _{H^n} \equiv 0$ then $g \equiv 0$.	· · · · · ·
If $f _{H^n} \neq 0$ then $g \neq 0$, and in particular $\Pr[g(\Gamma_1,, \Gamma_n) = 0] \leq \frac{n \cdot (H^n _{H^n})}{ F }$	<u> -)</u> .
Hence it suffices to check that $\sum_{\alpha_1,\dots,\alpha_n \in H} f(\alpha_1,\dots,\alpha_n) t_n^{int(\alpha_n)} t_n^{int(\alpha_n)}$ for random	ſŗ,「'n EF.
To make the addend a polynomial: $\forall r \in H$ define $\hat{r}(x) := \sum_{a \in H} r^{int(a)} L_{a,H}$	(x).
In sum it suffices to run sumcheck on this claim:	
$\sum_{\substack{\alpha_1,\dots,\alpha_n \in H}} \widehat{f}(\alpha_1,\dots,\alpha_n) \widehat{f}(\alpha_1) \cdots \widehat{f}_n(\alpha_n) \text{for random } f_{1,\dots,n} \in \mathcal{F}_n$	

Part 2: Zero-on-Subc	ube Test	individual obgree < d [2/2	2]
P(F,H,r,f)	f _H n [°] = 0	$V^{f:\mathbb{F}^{n}} \mathbb{F}(\mathbb{F},H,n)$	• •
For every ty,, rn EFF:	· · · · · · · ·	Sample ri,, in EF.	• •
Output eval table The [rim. In]		Run suncheck for the claim	• •
of IP prover for sumchack claim	· · · · · · · ·	$\sum_{\alpha_{i},\dots,\alpha_{n}\in H} f(\alpha_{i},\dots,\alpha_{n}) \prod_{i\in [n]} f_{i}(\alpha_{i}) = 0$	• •
$\sum_{\substack{n_1, \dots, n_n \in H \\ n_1, \dots, n_n \in H \\ l \in [n_1]}} f(a_1, \dots, a_n) \prod_{i \in [n_1]} f_i(a_i) = 0 \qquad \qquad$		 Vsc(IF, H, n, o) field ? / 1 domain / ++vars claimed sum query complexity: O(n. (IHI+d)) elts from The -1 elt from f running time: poly (n, IHI, d) from Vsc 	
<u>Completeness</u> : if $f _{H^n} = o$ then	¥r,.,reff Zo	$a_{1}, a_{n} \in H$ f(a_{1}, a_{n}). It \hat{F} : (a_{i}) = 0 so Vsc accepts w.p.	
Soundness: if flyn = 0 then,	except w.p. < <u>N. (IH</u>	$\frac{1}{1}$ over $r_1,, r_n \in \mathbb{F}$, $\Sigma_{\alpha_1,,\alpha_n \in H} f(\alpha_1,,\alpha_n) \prod_{i \in I_n} \hat{r}_i(\alpha_i)$	• •
so Vsc accepts w	$\mathfrak{p} \leq \underline{\mathfrak{n}} \cdot (\mathfrak{H} - + d)$	$\overline{)}$.	. 9

Putting the Two Parts Together $\vee((m,n,\emptyset))$ $P((m,n,\phi),A)$ 1. Compute $\hat{\varphi} := T(F, (m, n, \beta))$ for IF of size poly(10) 0. Compute $\hat{\varphi} := T(F, (m, n, \beta))$ for $|F| = pdy(1|\beta))$. $T_{A} = \frac{2}{3} = \frac{2}{3$ 1. Output TA: IF -> IF that equals the 2. Sample ri,..., rine IF & run sundeck for daim multilinear extension of A: {0,13-, fo,13 2. For every (1,..., In EF: $\left[\mathbb{T}_{Sc}^{(1)}[\Gamma_{1,...,}\Gamma_{n}] \right] \xrightarrow{I}_{ISc} \left[\mathbb{V}_{Sc} \left(\mathbb{F}, \{o_{1}\}, n, o \right) \right] \xrightarrow{I}_{ISc} \left[\mathbb{F}, \{o_{1}\}, n, o \right) \xrightarrow{I}_{ISc} \left(\mathbb{F}, \{o_{1}\},$ output sumcheck proof TSc"[[1,...,rn] 3. Sample Fi, ..., Fm+3nE HT & run sumcheck for claim: $\sum_{i \in [m+3h]} \emptyset(w, v_1, v_2, v_3, TT_A(v_1) TT_A(v_2), TT_A(v_3)) \prod_{i \in [m+3h]} f_i(\alpha_i) = 0$ 3. For every (1,-, (m+3n EF: $A = (W, V_1, V_2, V_3) \in \{0, 13^{m+3n}\}$ output sumcheck proof TISC [[,...,tm+3n] $\begin{aligned} & f_{\mathcal{S}} \cap \sum_{\substack{\alpha \in \{w, v_1, v_2, v_3\} \\ \in \{0, 13^{m+3}n\}}} \phi(w, v_1, v_2, v_3, TT_A(v_1) TT_A(v_2), TT_A(v_3)) TT_{i}(\alpha_i) = o \\ & f_{\mathcal{S}}(\alpha_i) =$ $\sum \left| V_{sc} \left(\mathbb{F}_{s_{0},1} \right), \mathsf{m}_{t} \mathsf{sn}_{s}, \mathsf{o} \right) \right|$ (1,-, Imtshelf (S_1, \dots, S_{m+3n}) · guary TIA at (Sm+1,..., Sm+n), (Sm+n+1,..., Sm+2n), (Sm+2n+1,..., Sm+3n) · for i= 1,..., m+3n : eval ri(x) at Si · evaluate & at (s, ans, ans, ans, ans) 4. low-degree test TTA for total degree n [poly(n)]

Analysis $\vee((m,n,\phi))$ $P((m,n,\phi),A)$ 1. Compute \$:= T(F, (m,n, p)) for F of size poly (10) 1. Output TA: IF -> IF that equals the $T_{\mathbf{A}} = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$ 2. Sample SI,..., She IF & run sundeck for daim multilinear extension of A: 50,13- 50,13 $\sum_{\substack{\alpha_{i},\dots,\alpha_{n}\in \{\rho_{i}\mid S^{n}\}}} \pi_{A}(\alpha) \left(1 - \pi_{A}(\alpha) \right) \prod_{i\in [n]} \widehat{F_{i}}(\alpha_{i}) = 0$ 2. For every ry, rheF: $\left. \Pi_{Sc}^{(1)} \left[\Pi_{m}, \Pi_{n} \right] \right\} \left\{ \begin{array}{c} \end{array} \\ \end{array} \\ \left. V_{Sc} \left(\mathbb{F}, \{o_{1}\}, n, \circ \right) \\ \end{array} \right\}$ output sumcheck proof TSc"[[1,...,rn] for $\sum_{a_1,\dots,a_n \in \{0,1\}} \prod_{i \in [n]} (a_i) \prod_{i \in [n]} (a_i) = 0$ ly-, In Elf (Sy..., Sn) • guary TIA at (Sy..., Sn) • for n=1,..., N: eval fi(x) at Si 3. Sample Firm, Fm+3n ETF & run sundreck for claim: $\sum_{i \in [m+3n]} \emptyset(w, v_1, v_2, v_3, TT_A(v_1) TT_A(v_2), TT_A(v_3)) \prod_{i \in [m+3n]} f_i(\alpha_i) = 0$ 3. For every (1,..., (m+3n EF: $A = (W, V_1, V_2, V_3)$ $\in \{0, 13^{m+3n}\}$ output sumcheck proof TISC [[,...,tm+3n] $f_{\text{Sr}} \sum_{\substack{\alpha = (w,v_1,v_2,v_3) \\ \in \{0,13^{m+3n}\}}} \widehat{\phi}(w,v_1,v_2,T_A(v_1)T_A(v_2),T_A(v_3)) \prod_{\substack{i \in [m+3n]\\ i \in [m+3n]}} \widehat{f_i}(\alpha_i) = o \left\{ \prod_{\substack{\alpha = (w,v_1,v_2,v_3)\\ i \in \{0,13^{m+3n}\}}} \left\{ \prod_{\substack{\alpha = (w,v_1,v_2,v_3)\\ i \in \{0,13^{m+3n}\}}} \left\{ \sum_{\substack{\alpha = (w,v_1,v_2,v_3)\\ i \in \{0,13^$ [1,.., [m+3h eff (S1,..., Sm+3n) · guary TIA at (Sm+1,..., Sm+n), (Sm+n+1,..., Sm+2n), (Sm+2n+1,..., Sm+3n) · soundness error: $\mathcal{E}_{LST} + O(1) + O\left(\frac{n \cdot n}{|\mathbf{F}|}\right) + O\left(\frac{(m+3n) \cdot (|\underline{\beta}| \cdot n)}{|\mathbf{F}|}\right) = \mathbf{b} |\mathbf{F}| = \operatorname{poly}(|\underline{\beta}|)$ 4. low-degree test TTA for total degree n greenes · query complexity: · proof length: · verifier time $|T_{A}| + |T_{sc}^{(1)}| + |T_{sc}^{(2)}|$ $(1+3+9LDT) + h \cdot O(1) + (m+3n) - |\phi| pdy(10) + poly(n) + poly(10) + t_{LDT}$ $= |FF|^{n} + |FF|^{n} \cdot O(|FF|^{n} 1) + |FF|^{m+3n} \cdot O(|FF|^{m+3n} \cdot |\emptyset|) = poly(n) + poly(|\emptyset|)$ = $O(|FF|^{pd_{\gamma}(m,n)}) = 2^{poly(m,n,\log(0))} = poly(|\emptyset|)$ $= \operatorname{poly}(|\mathcal{Y}|)$