Lecture 03

Foundations of Probabilistic Proofs Fall 2020 Alessandro Chiesa

Interactive Proofs f	for Polynomial	Space	
We have proved an upper be Today we prove that this u	ound on the power of in pper bound is tight:	ractive proofs: I	P C PSPACE.
theorem: PSPACE SJ	E P	· · · · · · · · · · · ·	
We follow a similar approace	as before:	· · · · · · · · · · ·	· · · · · · · · · · ·
	last lecture	today	· · · · · · · · · · ·
1) choose complete problem	UNSAT/#SAT	TQBF	
2) arithmetization	reduce to sumcheck problem	reduce to sum-product problem	. .
3 algebraic problem	sumcheck protocol	Shamir's protocol	

Quantified Boolean Formulas
A fully quantified boolean formula is a logical expression such as
$\forall x_1 \exists x_2 \exists x_3 (X_1 \land X_2) \lor X_3 , \text{ or } \forall x_1 \exists x_2 \forall x_3 (X_1 \land X_2) \lor X_3 .$
every variable is boolean formula
The expression evaluates to true or false.
Let us evaluate the examples:
1) TRUE 0,0
$X_{1} = \frac{1}{2} = \frac{1}{2$
$X_2 X_3 (1 \land 1) \lor 1 = 1$ $Note: NP \sim \{ \varnothing \mid \exists x_1 \exists x_2 \dots \exists x_n \not \varnothing(x_1 \dots \land n) = i \} \& coNP \sim \{ \varnothing \mid \forall x_1 \forall x_2 \dots \forall x_n \not \varnothing(x_1, \dots, x_n) = i \}.$
$Def: TQBF = \{ \varphi(X_1,, X_n) \text{ s.t. } \forall X_1 \exists X_2 \forall X_3 \dots \varphi(X_{n-1}, X_n) = 1 \}$
Fact: TQBF is PSPACE-complete [more on this later]

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Arithmetization for TQBF
We wish to arithmetize an expression such as: $\forall x_1 \exists x_2 \forall x_3 \dots \not (x_1, \dots, x_n).$
We arithmetize the formula and the quantifiers:
() formula: we use the arithmetization used for #SAT where $\varphi(x_{1},,x_{n}) \mapsto p(x_{1},,x_{n})$ s.t. $p _{\{0,1\}^{n}} \equiv \varphi \& deg_{tot}(p) \leq \phi $.
(3) \exists behaves like a disjunction $(\exists x; p(\dots, x; \dots) = p(\dots, 0, \dots) \lor p(\dots, 1, \dots))$
So we define an operator for this: $ \prod_{x_i} p(, X_{i,}) := [-(1-p(, 0,)) \cdot (1-p(, 1,)) $
In sum we get: $\prod_{x_1, x_2, x_3} \prod_{x_1, x_2, x_3} p(x_1,, x_n)$.
Since plants = \$ and TI, II stay within \$2,13, the expressions equal over any field.

Towards a Protocol: Degree Reduction
We want a protocol to evaluate $\prod_{X_1} \prod_{X_2} \sum_{X_3} p(X_1,, X_n)$.
Idea: take inspiration from sumcheck protocol!
$\begin{array}{llllllllllllllllllllllllllllllllllll$
In the sumcheck protocol, each round peels off 1 operator.
E.g., in round 1 the prover sends: $p_1(X_1) := \coprod \underset{X_2 \times X_3}{\text{TT}} p_2(X_1, \dots, X_n)$.
Problem: p; may have degree 2 ⁿ⁻ⁱ . 3m — exponentially large?
Degree reduction: on $\{0 13^n, X_1^3X_3 + X_2^5X_5^4 + X_4^2 \equiv X_1X_3 + X_2X_5 + X_4$ so we
can set all positive powers to 2!
New operator V := "teplace each occurrence of X;", K>>, with X:
This leads to a new expression:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

•

•

•

•

•

•

•

•

• • • • • •

Shamir's Protocol
We need to check:
$$\prod_{X_{1}} \bigvee_{X_{2}} \underbrace{\prod_{X_{2}} \bigvee_{X_{2}} \bigvee_{X_{3}} \bigvee_{X_{2}} \bigvee_{X_{3}} \ldots \underbrace{\prod_{X_{n}} \bigvee_{X_{n}} \bigvee$$

Analysis of Shamir's Protocol
Consider a round jECK] where $O_j = TT_{X_i}$ for iECN]. [Similar to $O_j = II_{X_i}$.]
$\frac{\text{Completeness}}{\text{Completeness}}: \text{Suppose that } \Pi_{X_i} O_{j+1} \cdots P(W_{1,,}W_{i-1}, X_{i,,}X_n) = \forall j_{-1}.$
The honest prover sends $p_j(X_i) := O_{jn} \dots p(W_{i},, W_{i-1}, X_{i},, X_n)$. The verifiers check passes: $p_j(0)p_j(1) = \Im_{j-1}$.
Next, for every choice of Wije FF, $O_{j+1} \cdots p(W_{1,\dots}, W_{1,\dots}, X_n) = P_j(W_{1,\dots}) = V_j$.
Soundness: Suppose that $TT_{X_i} O_{j+i} - P(W_{1,,W_{i-1},X_{i},,X_n) \neq \delta_{j-1}$.
The malicious prover sends $\vec{p}_j(X_i)$ of degree at most 1. If $\vec{p}_j \equiv p_j$ (the honest polynomial) then the verifier's check fails: $\vec{p}_j(0)\vec{p}_j(1) \neq \vec{p}_{j-1}$.
So suppose that $\widetilde{p_{j}} \neq p_{j}$. By definition of p_{j} , $\mathcal{O}_{j+i} \cdots p(W_{1},, W_{i-1}, W_{ij}, X_{i+1},, X_{n}) = p_{j}(W_{ij})$. By definition of X_{j} , $Y_{j} = \widetilde{p_{j}}(W_{ij})$.
So the output claim is $P_{j}(W_{ij}) \stackrel{?}{=} p_{j}^{\sim}(W_{ij})$. This holds we at most $V_{[IF]}$ over $W_{ij} \in F_{j}$.

Analysis of Shamir's Protocol
Consider a round jEEK] where Oj=VX; for rE[n]. evaluated at (W1,,W3)
Completeness: Suppose that $\overline{X_i} \xrightarrow{O_1} p(W_1,, W_i,, W_s, X_{s_1},, X_n) = \delta_{j-1}$ for S_{i} .
The honest prover sends $p_j(X_i) := O_{j+1} \cdots p(W_{i},, W_{i-1}, X_i, W_{i+1},, W_s, X_{s+1},, X_n)$. The verifiers check passes: $(\nabla_{X_i}, P_j)(W_i) = X_{j-1}$.
Next, for every choice of $W_{ij} \in \mathbb{F}$, O_{j+i} , $p(W_{ij}, W_{ij}, W_{ij}, W_{ij}, W_{s}, X_{s+j},, X_n) = P_{ij}(W_{ij}) = \delta_{j}$.
Soundness: Suppose that $\overline{X_i}$ $O_{j+1} = p(W_{1,,W_s}, X_{s_1,,X_n}) \neq \delta_{j-1}$ for S_{j+1} .
The maticious prover sends $\widetilde{p}_{j}(X_{i})$ of degree at most $3m$ or 2. If $\widetilde{p}_{j} \equiv p_{j}$ (the honest polynomial) then the verifier's check fails: $(X_{i}, \widetilde{p}_{j})(W_{i}) = (X_{i}, p_{j})(W_{i}) \neq Y_{i}$
So suppose that $\widetilde{p_{j}} \not\equiv p_{j}$. By definition of p_{j} , $\mathcal{O}_{j+1} \cdots p(W_{j}, W_{j-1}, W_{j}, W_{j+1}, \dots, W_{s}, X_{s+1}, \dots, X_{n}) = p_{s}(W_{j})$. By definition of X_{j} , $X_{j} = \widetilde{p_{j}}(W_{j})$.
So the output claim is $P_{j}(W_{ij}) \stackrel{?}{=} p_{j}(W_{ij})$. This holds w.p. at most $\frac{3m}{151}$ or $\frac{2}{151}$ over $W_{ij} \in F$.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Analysis of Shamir's Protocol
Overall completeness:
In each round, if current claim is true then new claim is true w.p. 1. After the last round, the final cluck $(p(w_1,,w_n)=v_k)$ passes.
Ovarall Soundness:
The total soundness error is computed as follows:
$T \nabla \prod \nabla \nabla T \nabla \nabla \nabla \dots \prod \nabla \nabla \dots \nabla p(X_{1},, X_{n})$ $X_{1} X_{1} X_{2} X_{1} X_{2} X_{3} X_{1} X_{2} X_{3} \dots X_{n} X_{n} X_{n} X_{n} X_{n} X_{n} X_{n}$ $\lim_{L \to L} \bigcup_{L \to L} \bigcup$

TQBF is in PSPACE
Let $\overline{\Phi} = Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \varphi(x_1, \dots, x_n)$ be a (fully) quantified bolean formula;
where each Q: e { H, J S. We wish to evaluate 9 in poly(m, n) space.
Define: $\overline{\Phi}_n = \overline{\Phi}$ and for each $i \in \{n-1, n-2, \dots, p\}$
$\underline{\Phi}_{i}(X_{1},,X_{n-i}) \coloneqq Q_{n-i+1} \times_{n-i+1} \cdots Q_{n} \times_{n} \not (X_{1},,X_{n-i},X_{n-i+1},,X_{n}),$
Observe that $\overline{\Phi}_0 = \beta$ and a recurrence holds:
$ \bar{\Phi}_{n} = Q_{1}X_{1}\bar{\Phi}_{n-1}(X_{1}), \underline{\Phi}_{n-1}(X_{1}) = Q_{2}X_{2}\bar{\Phi}_{n-2}(X_{1},X_{2}), \text{ and so on,} $
This yields a full binary free on 2° leaves that we can evaluate in poly(m,n) space.
Exfor $n=3$: $\Phi_{n}=\Phi$
$\Phi_{n-1}(0)$
$\overline{\Phi}_{n-2}(00) \qquad \overline{\Phi}_{n-2}(01) \qquad \overline{\Phi}_{n-2}(10) \qquad \overline{\Phi}_{n-2}(11)$
$\underline{\Phi}_{n-3}(000) \ \underline{\Phi}_{n-3}(001) \ \underline{\Phi}_{n-3}(010) \ \underline{\Phi}_{n-3}(011) \ \underline{\Phi}_{n-3}(100) \ \underline{\Phi}_{n-3}(101) \ \underline{\Phi}_{n-3}(101) \ \underline{\Phi}_{n-3}(101) \ \underline{\Phi}_{n-3}(111) $

TQBF is PSPACE-Hard
Suppose that a language L is decidable by a machine M running in space S(n)=poly(n).
GOAL: given x of size n, we wish to construct a QOF \$\overline{1}, of size poly(n), that is true iff xEL.
Given instance X, define.
G := configuration graph of the computation of M on x".
The graph has 20(s(n)) vortices (the possible states) and directed edges represent transitions.
There is a unique starting state Cs and unique accepting state Ca.
Observation: $X \in L \iff \exists path in G from Cs to Ca.$
We recursively define, for increasing i, a QBF \$\overline{1}\$; s.t.
$\forall configs C, C', \overline{\Phi}(C, C')=1 \leftrightarrow \exists path in G from C to C' & length \leq 2'.$
The totally quantified boolean formula that we seek is $\overline{\Phi} := \overline{\Phi}_{O(S(N))}(C_{S,G})$.
We are left to show that we can construct $\overline{\Phi}_i$ with size poly (n,i) .

$ Vant: \overline{\Phi}(C,C')=1 \iff \exists path in G from C to C' & length \leq 2'$.
Base case $(i=0)$:
$\overline{\Phi}_{o}(C,C') :=$ "the bodgen formula obtained by applying the Gook-Levin Theorem to the transition function of M on input x" (no quantifiers).
Recursive case (170): consider a halfway configuration
$\Phi_{i}(C,C') := \exists C'' \Phi_{i-1}(C,C'') \land \Phi_{i-1}(C'',C')$
Problem: the formula is correct but doubles in size at each rewrsion
Solotion: use more quantifiers to use $\overline{\Phi_{i-1}}$ only once:
$\Phi_{i}(C,C') := \exists C'' \neq D_{i}, D_{z} \left((D_{i}=C \land D_{z}=C'') \lor (D_{i}=C'' \land D_{z}=C') \right) \Rightarrow \Phi_{i,i}(D_{i}, D_{z})$
Above we vse the synctractic sugar $\phi_1 \Rightarrow \phi_2$ which stands for $\overline{\phi}_1 \vee \phi_2$.
Now we have that $ \overline{\Phi}_i = \overline{\Phi}_{i-1} + poly(S(n))$, so $\overline{\Phi}_{O(S(n))}$ has poly $(n) - Si \neq 0$.

•

•

٠

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

٠

•

•

•

•

•

•

•