Foundations of Probabilistic Proofs

Fall 2020

Alessandro Chiesa

Idministrivia Tuesdays and Thursdays at 11:00-12:30 (CA time)	
ongoing syllabus on course website	· · · · · · · · · · · ·
• all course communication on Piazza (access code is fi	pp - 2020)
T me to you & you to me four those taking course for creduit: - occasional homeworks] submit on Gradescope - research project] - uniting on course notes	anyone else also welcome to do any
- participation (live or on Piazza)) · · · · · · · · · · · · · · · · · · ·
, this online course is an experiment: feedback on format	is necome!

Unit 1: Interactive Proofs	Unit 2: Probabilistically Checkable Proofs
low-degree extension, GKR, IP=PSACE, limitations, 2K	linearity testing, low-degree testing, Zero testing
linear-size proofs, uni FRI protocol	variate sumeheck,
Unit 4: Proof Composition	Unit 5: parallel repetition
	Vachitsky's theorem Raz's theorem

Background . finite fields (IFq for prime pouer 9) · basics of linear codes (rate, distance,...) · polynomials [F[X], F[X1,...,Xn] · basic complexity theory - machines, cirwits, reductions - Cook-Levin Theorem · · Goals - basic complexity classes · understand different models of NEXP probabilistic proofs (IP, PCP, IOP) EXP • understand their power: PSPACE - check "hard" problems beyond BPP - exponential savings in CONP NP communication or verification P - zero knowledge · design & analyze probabilistic proofs

