CS276: Cryptography

Due date: October 8, 2015

Problem Set 2

Instructor: Alessandro Chiesa

GSI: Manuel Sabin

Problem 1

Two ensembles $X = \{X_k\}_{k \in \mathbb{N}}$ and $Y = \{Y_k\}_{k \in \mathbb{N}}$ are statistically indistinguishable, denoted $X \simeq Y$, if for all positive constants c and sufficiently large k,

$$\frac{1}{2} \sum_{\alpha \in \{0,1\}^k} \left| \Pr\left[X_k = \alpha \right] - \Pr\left[Y_k = \alpha \right] \right| < \frac{1}{k^c}$$

- 1. Prove that if X and Y are statistically indistinguishable, then they are computationally indistinguishable.
- 2. Show that there exist two ensembles X and Y that are computationally indistinguishable but *not* statistically indistinguishable. (Do not use any computational assumption!)

Problem 2

Let G be a pseudorandom generator with expansion factor ℓ and let h be any (not necessarily polynomial-time computable) length-preserving permutation over $\{0,1\}^*$. (The expansion factor of a pseudorandom generator G is a positive polynomial ℓ such that $|G(x)| = \ell(k)$ for all $x \in \{0,1\}^k$ and $k \in \mathbb{N}$.)

1) Is it always the case that $\{s \leftarrow \{0,1\}^k : h(G(s))\}$ and the uniform distribution over $\{0,1\}^{\ell(k)}$ are computationally indistinguishable? Is $G'(s) \equiv h(G(s))$ a pseudorandom generator?

2) Is it always the case that $\{s \leftarrow \{0,1\}^k : G(h(s))\}$ and the uniform distribution over $\{0,1\}^{\ell(k)}$ are computationally indistinguishable? Is $G'(s) \equiv G(h(s))$ a pseudorandom generator?

3) If you know that h is polynomial-time computable, do your answers to (1) and (2) change?

Problem 3

Let G_1 and G_2 be pseudorandom generators with respective expansion factors ℓ_1 and ℓ_2 . For each of the candidates below, justify whether the function is a pseudorandom generator or not.

A: $G_A(x) = \mathsf{reverse}(G_1(x))$, where $\mathsf{reverse}(\cdot)$ reverses the bits of its argument.

- **B:** $G_B(x) = G_1(x) ||G_2(x).$
- C: $G_C(x||y) = G_1(x)||G_2(y)$, where |x| = |y| or |x| = |y| + 1.
- **D:** $G_D(x) = G_2(G_1(x)).$
- **E:** $G_E(x) = G_1(x) \oplus (x||0^{\ell_1(|x|) |x|}).$

Problem 4

Let $\mathcal{F} = \{F_s : \{0,1\}^k \to \{0,1\}^k\}_{s \in \{0,1\}^k}$ be a pseudorandom function. For each of the candidates below, justify whether the function is a pseudorandom function or not.

- 1. $G_s(x) = F_s(x) ||F_s(\bar{x})|$.
- 2. $G_s(x) = F_{0^k}(x) ||F_s(x)|$
- 3. $G_s(x) = F_{s_1}(x) || F_{s_2}(x)$, where $s_1 \equiv F_s(0^k)$ and $s_2 \equiv F_s(1^k)$.
- 4. $G_s(x) = F_x(s)$.
- 5. $G_s(x) = F_s(x) \oplus s$.
- 6. $G_{s_1,s_2}(x) = (F_{s_1}(x) \oplus s_2) ||F_{s_2}(x)$ (where $|s_1| = |s_2| = k$; consider only even-length seeds for G).

7.
$$G_s(x) = F_{F_s(x)}(x)$$
.

Problem 5

In this problem we consider two other ways of modeling what it means to be a pseudorandom function family, and investigate how these new definitions compare to the one we discussed.

1. In the definition of a PRF, we allow for an adversary to *adaptively* query its oracle in order to distinguish whether the oracle is truly random or pseudorandom. Suppose we now consider *non-adaptive* tests: an adversary provides a list of testing points, then receives the values of the oracle at each of those testing points, and finally makes a decision (without consulting the oracle again).

Definition 1 (Non-Adaptive Pseudo-Random Function Families) A function family is non-adaptively pseudorandom if a random member of the family is indistinguishable from a random function, under all polynomial-time non-adaptive tests.

Is the above definition of PRF strictly stronger, strictly weaker, equivalent, or incomparable to our original adaptive notion? Prove your answer.

2. Now we consider a different kind of test in which we see if not being able to *predict* an output of a function is equivalent to the function seeming random. A *predictor* is allowed to adaptively query the oracle on several points, and then outputs a pair (x, y). The predictor succeeds in the test if: (1) it has not already queried the oracle on point x, and (2) the value of the oracle at x is equal to y.

Definition 2 (Unpredictable Function Family) A function family is unpredictable if no polynomial-time oracle machine can succeed in the prediction experiment with non-negligible advantage over random guessing.

Is the above definition of PRF strictly stronger, strictly weaker, equivalent, or incomparable to our original adaptive notion? Prove your answer.