CS276: Cryptography September 24, 2015

Encryption Schemes cont.

Instructor: Alessandro Chiesa Scribe: Eleanor Cawthon

Message Indistinguishability

First, we review our intuitive and formal definitions of encryption schemes. Informally, we
consider Alice and Bob, who share a secret key $, and a passive adversary Eve who can read
their messages, but not stop, inject, or modify them. An encryption scheme provides the
following properties:

1. Functionality: if Alice sends m, then Bob can recover m.

2. Security: Eve learns nothing about m.
Formally,

Definition 1 an encryption scheme is a tuple (E, D) of probabilistic polynomial time
algorithms that satisfies the following:

1. Completeness : for all k € N and for all secret keys sk € {0, 1}“’“), for every message
m € {0,1}"*) we have D(1%, sk, E(1%, sk, m)) = m.

2. Security : For every pair of families of messages with the same length

(that 18, V{m,ﬁo)}k , {m,(cl)}k s.t. m,(f) e {0, 1}”(’6))7 we have

{5 (00 )} = {5 (.00 )}

Note: the equality can be either perfect, statistical, or computational.

This 1s called message indistinguishability .

One-time Pads

Theorem 2 There exist E and D that satisfy completeness and perfect message indistin-
gquishability.

Proof: consider the one-time pad (OTP ):

E(1%, sk,m) := sk ®m
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D(1% sk, c) == sk @ ¢

This is complete — xor’ing the same secret key encrypts and decrypts. It is also secure —
for a uniformly selected sk, xor preserves the uniformity — Uyxy ® m = Uy @ m/V'm, m’.
So this works. g

Limitations:

1. Keys are large (the key has to be as long as the message, |sk| > |m]).

2. Key is one time — if you reuse some sk to generate two cyphertexts sk ® m1 = ¢
and sk & mg = cg, the adversary can combine them to get back information about the
original message (¢ ® ca = mq @ ma). So, if the attacker already knew my, it would
learn mgy this way.

Perfect Message Indistinguishability

Theorem 3 For every (E,D) that satisfies completeness and perfect message indistin-
guishability, it holds that ((k) > n(k).

Proof: suppose ¢(k) < n(k). Pick ml® ¢ {0,137 sk € {0,1}'®). Get ¢ := E(sk,mP).
Now pick m™) e {0, 130 sk € {0, 1}Z?’“) such that D(sk/, c) # m. (We know m() exists
because ||z, D(sk, c)| < 2¢4%) < on(k),

By completeness, E(sk’,m1)) # c.

From now on, we care about computational, not perfect or statistical.

Semantic security

Definition 4 FEwve wants to know f(m) and already knows some information I(m). e.g.
Eve might know that Alice draws m from well-known A (such as the set of all English
sentences).

An encryption scheme provides semantic security if, for every message distribution 4}, €
A({0,1}R)) | for every goal function fi : {0,1}**) — {0,1}*, for every partial information
I - {0,1}™%) — {0,1}*, and for every ppt A,

Py [A (15, 1y () B (14, Usgey, 1) ) = fic ()] = Pr [S (15 I () = fic ()]
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1s negligible in k.

That is, anything eve learns from looking at the message cyphertext, Eve already knew from

M.

Equivalence of Message Indistinguishability and Semantic Se-
curity

Theorem 5 An encryption scheme provides computational message indistinguishability if
and only if it provides semantic security.

Proof: («+) Suppose (E, D) is not ¢.M.I. Then there is some distinguisher D and {mg)) }k , {m,(:) }k
s.t. m,(:) € {0,1}%) such that

6(k) = |Pr | A(E (U, mi)) = 1] = Pr |A(E Uy, mi)) = 1] |

is not negl(k). Equivalently, we have a distinguisher that allows us to guess a bit with better
than % probability:
1 (k)

Pr [A(EU g, m) = 0n] = 5+ 57

We can use this to construct a counterexample for semantic security. Let .#} be our
two one-bit messages {mlgo),mél)}, and define our goal function fk(mz) as the function
that guesses that bit b. We leave the partial information function empty, Ix(-) = e.
Now consider A’ (Iy (), E (U, #r)) = A(E(U, (1), #y)), which we already know has

Pr [A(E(U, gy, #4,)) = [1(M)] = 3425 Then for any S with with Pr [S(1%, I(44)) = fu( )] =
1

5, we have

| Pr {A’ (1k’Ik (M), E <1kaU€(k),///lc>> = (///k)} _Pr {S (lk,fk (///k)> _ (///k)h _ ;JF(S(:)

which is non-negligible in k. Thus, semantic security implies computational message security.

(—) if a scheme has computational message security, we prove directly that it also provides
semantic security. We can fix My, I, fr, A to define a simulator

S(F, In(My)) = A%, Ii(m), E(Uy 1), 0))

Now, for any m, if the difference between Pr [A(lk,fk(m),E(lk,UT(k),m)) = fr(m)] and
Pr[A(1%, I(m), E(1F, Ur(k)» 0)) = fr(#)] is non-negligible, then we can use A to construct
a distinguisher that distinguishes between E(1%, Ur(x),0) and E(1%, Ur(k), m), violating mes-
sage indistinguishability. Thus, (E, D) is semantically secure. O

Now back to constructions:
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We can construct perfect message indistinguishability from one time pads, but the keys are
huge so this is not practical. But, we can construct computaitonal message indistinguisha-
bility from one time pads and PRGs to provide (a lot of) randomness

Theorem 6 If there are pseudorandom generators, we can construct a one-time symmetric
encryption system with small keys.

Proof:
E(1%, sk,m) = gr(sk) ®m
D(1* sk, c) = gp(sk) @ ¢
91(Ur) ® m© = U,y @ m© = Uiy = Upiy ® mV =¢ g1o(Uy,) @ m
we can use the hybrid argument to complete the proof. O

Multi-Message Computational Message Indistinguishability

The above implies our definitions of security don’t protect against multiple messages. So,
we counstruct a revised definition for p-Message indistinguishability :

Definition 7 For all {Tﬁk(o)}k , {Tﬁk(l)}k s.t. m,gbz € {0, 1}”(’“), we have

(5 30 o (0 ) = (5 (02 8 (1)

No deterministic, stateless encryption scheme can achieve perfect message indistinguishabil-
ity.

(E(lkaUr(k)70)>E(1k>Ur(k)70)) Mk(o) = (070)

Example: o
(E(lkaU’r(k)vO)’E(lkaUr(k:)a1)) mk(l) = (Oal)

Note that E is both deterministic and stateless. Can we fix it with statefullness?

Stateful Approaches

E(1%, sk,m,i) = g,(f)(sk) dm
D(* sk, c,i) = g](j)(skr) ®c

o (U, 97 W), - = U UG

Even though using the same generator/seed, each individual element is indistinguishable
from the others!
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Chosen plaintext attacks

Now we want a stronger version of this that is secure against chosen plaintext attacks .

Say F = {F},} with Fj, = {fs|s + {0,1}*} is a pseudorandom function.
E(lka Skam) = fsk(r) ©m
D(lka Sk: C) - fsk(c(]) Der

So, we can have syncrhonization on a much smaller amount of randomness but just as secure.

Definition 8 Security against chosen plaintext attacks:

(E, D) is secure against CPA if for all pairs of messages {ni’k(o)}k , {n”?k(l)}k such that
mb € {0,1}"%) we have that for all ppt A:

e A0 08, 9 1] [0, 0 ) 1]

is negligible (k).

So, Eve has access to an encryption oracle and can encrypt whatever she wants and find out
what the ciphertext looks like.

Now, we'll prove that CPA security implies p—message indistinguishability

Theorem 9 An encryption scheme that is secure against chosen plaintext attacks is also
p-message indistinguishable for all p.

Proof: suppose there is some polynomial p, messages {ni’k(o)}k , {m’k(l)}k, and ppt A,

such that A distinguishes the messages.

Consider the hybrids: H,(f) = EUr(k), mg)i), ce E(Ur(k),mg’)i) E(Ur(k), ml(:’zﬂ), s BE(Ury
There is an 4 such that A distinguishes H ,(cl) and H,i“ with probability %.

Let AE(lk’Skf)(lk,c) =

L...yiicj E(lk,sk,m,ioj).)

._.
.
Il

2. j=i+1,...,pk):cj « E(lk’Sk’mg;)
3. = (Cl ... CiCCi4T - - - (pk)>

4. outputs A(?)
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Note that this time we can’t sample ciphertexts — so CPA is stronger that p-M.I.

We couldn’t go from p to 1 because of samplability. We fix this with the oracle.

X=Yy = (XU, x®) =yl y®)
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