CS276: Cryptography September 17, 2015

Luby-Rackoff Construction and Commitment Schemes

Instructor: Alessandro Chiesa Scribe: Rohan Mathuria

1 Luby-Rackoff Contruction

From last lecture:

G ={Gr}x ={(95. © 955 © 952 © 95 )| f1, f3, fo, f1 < Fi}.

Where g¢(z,y) = ylz & f(y)

Theorem 1 If Fy, is pseudorandom, G is strongly pseudorandom.

Proof:
Definition 2 R = {Ry}i. where R = {(guy © Gus © Gus © Juy )| U4, Uz, w2, u1 < Ug}

Our proof is composed of two parts:
1) (G,G71) = (R, R~!) (This was proved last lecture using a hybrid argument)
2) (R,R™1) = (I, T 1) will be subsequently proven:

Let D be any PPT distinguisher. Without loss of generality, assume D is non-repeating, since
any repeating distinguisher can be wrapped with a cache that responds to repeat queries. Its
distinguishing probability is:

|Pr(DReR (17) = 1] — Pr[D™T " = 1])

By the triangle inequality,

< |Pr[DRe B (1%) = 1] — Pr[DS(1%) = 1)| + | Pr[D*(1%) = 1] — Pr[D" 1" = 1)

where $ is the random distribution.

The latter term: |Pr[D%(1%) = 1] — Pr[DH’“Hl:1 =1]] < tim;#)z which is negligible. This was
not proven in lecture, but the intuition for this argument was built last lecture. Thus we will only

concern ourselves with the first term.

Definition 3 A transcript 7 of D is a representation of all of the queries D makes, and can be
represented as ((z1,y1,b1), ..., (¢, Yq, bg)) such that if b; = 0, Ry, was queried at x; and received y;,
and if b; = 1, R,;l was queried at y; and received x;. The transcript of DRbRZI(lk)) is symbolized
as tr(DEsRC(1F))
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Definition 4 T is set of all transcripts T such that D seeing T outputs 1. Note: here we are firing
all of D’s coinflips to have the best possible distinguishing probability.

Definition 5 Let T’ be set of all transcripts T such that D seeing T outputs 1, and T is consistent
with the oracle being a permutation.

Then
|Pr[DRef (1F) = 1] — Pr[DS(1%) = 1|

= 3" Pr[DRR (1K) = 1jtr(DR R = 1] Pritr (DR ) = 7] Pr(D® = 1[tr(D) = 1] Pr{tr(D®) = ]|

TeT
=" Pritr(D" ) = 7] — Pritr(D%) = 7)|
TeT
<Y Pritr(DReRT) = 1) — Pritr(D%) = 7| + | Y Pritr(DR ) = 7] — Pritr(D%) = 7)|
TeT’ TET’

by the triangle inequality. The latter term is negligible since a negligible fraction of 7 € T are ¢ T".
This wasn’t proven in lecture.

Definition 6 z; = (LY, RY) — (L}, R}) — (L?,R?) — (L}, R}) — (L}, RY) =y,

Ul u us Uq
Definition 7 u; is good for 7 if Ri, ..., R} has no repetitions.

Definition 8 wuy is good for T if L3, ..., Lg has no repetitions.

2
Lemma 9 Pry, u,[u1 or uy is not good for 7] < & V1 € T”

Proof: We need to show that Pr[R} = Rj] < 5¢Vi # j and Pr[L} = L3] < 3:Vi # j. We will

only prove the former; the latter follows from the same argument.

(R} = R}) = L} @ Ui(R)) = LY ® U1(RY). Our initial assumption that D is non-repeating affirms
that (LY, RY) # (L3, RY). Since (R} = RY) — (LY = LY), R # RY. Thus, since U is a random
function, Pr[LY ® U;(R?) = L(; el (R(J))] < 57 The rest of the argument follows similarly. O

-1
Lemma 10 Pr,g 3[tr(D% 8 ) = 7] = Prtr(D®%) = 7] V7, good uy,us

Proof: For each i,
L} =R} = L; ®uz(R;)

R} =L} ®u3(R}) = R} ® us(L})

So
uz(R}) = Lj ® L}
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uz(L}) = R; & R}
Thus, since u; and uy are good,

_ 1
Pru2,u3[t7“(DRk’R’“1) =7] = 92qk Pr{tr(D%) = 7]

So the initial expression that we’ve summed over, Pr[tr(DR’“R;l) = 7] — Pr(tr(D%) = 7]

= Pr[tr(DRkvR?l) = Tluy,uq are good]Pr[uy,us are good] + Pr[tr(DRkvREl) = T|ujor uy is not
good] Pr[u; or uy is not good] — Pr(tr(D?%) = 7]

= Pr{u; or uy is not good for T](—Pr[tr(DRk’Rlzl) = T|uy, uyq are good] + Pr[tr(DRk’Rlzl) = T|ujor
uy is not good))

Thus, the summed expression, | > . Pr[tr(DRk’Rlzl) = 7] — Pr[tr(D%) = 7]|, by lemma 9, is

2

=&l>, Pr[tr(DRk’Rlzl) = T|ujor uy is not good] — Pr[tr(DRk’Rlzl) = T|u1,uys are good]

which by lemma 10 is

< 2,‘3—:, which is negligible in k.

2 Commitment Schemes

Definition 11 A commitment scheme is a two-phase protocol between a sender and a receiver.

1) In the commitment phase, the sender commits to a message m to produce commitment c.

2) In the reveal phase, the sender reveals the message m in the commitment c.

There are two properties of a commitment scheme: hiding and binding. Conceptually, hiding requires

a commitment to m to leak nothing about m, and binding requires a commitment to not be openable
in two ways. Hiding and binding can each be done statistically or computationally.

Statistical Hiding Computational Hiding
Possible using one-way
Statistical Binding Impossible permutations as we will
see later
Computational Binding Pedersen Commitment Possible
Scheme

Definition 12 A computationally hiding statistically binding commitment scheme is a pair of PPT
algorithms (Commit (C), Reveal(R)) satisfying the followin:

1) Completeness: Yk, ¥Ym € {0,1}!®) Vs € {0,1}7F) R(1*,s,C(1%,5,m)) = m

2) Hiding: V{m,(cl)}7 {m,(f)} such that |m,(€1)| = |m,(62)|, {C(lk,ur(k),m,(cl))} = {C(1k7ur(k)7m§€2))}
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3) Binding: Vk,Vs,s' € {0,1}"*) vm € {0,1}'*) R(1*,s',C(1%,5,m)) € {m, L}

Theorem 13 If One Way Permutations Ezxist, there exists a computationally hiding, statistically
binding encryption scheme with l(k) =1

Proof: Let f; be a one way permutation mapping {0, 1} to {0, 1}"(*)
Let by be a hardcore bit on fj
Let C(1%,s5,m) = fx(s),br(s) ®m
Let R(1%, s, (c1,¢2)) :=
if fo(s)#c1 — L

else — co @ bi(s)
Claim 14 (C,R) is a computationally hiding statistically binding commitment scheme.
Proof: Ve, cg, s, m such that C(1%,s,m) = ¢, ¢z since s := f '(c1),m := bp(f, *(c1)) @ ca.

Thus (C, R) is statistically binding.

We didn’t finish the proof that the commitment scheme is computationally hiding. That will be
covered next lecture. (]
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