CS276: Cryptography November 3, 2015

Computational Zero Knowledge for NP

Instructor: Alessandro Chiesa Scribe: Praagya Singh

1 Introduction
Fact 1 SZK C AM N¢gAM. The right hand side is unlikely to contain NP.

In this lecture we will propose an interactive proof system for the 3-coloring graph problem (which
we know to be NP-complete), and we will begin the proof that shows that our interactive proof
system is computational zero-knowledge. So we will try to show NP C CZK - (note that given Fact
1, here we have to relax statistical zero knowledge to computational zero knowledge).

2 1IP System for 3-Coloring

Recall that 3-Coloring is defined as the language of graphs
{G | 3 3-coloring « : [n] — [3] of G}

Now we present our proposed IP construction for the 3-Coloring problem. We have a prover-verifier
pair (Pscor, Vacor). We also have a computationally hiding, statistically binding commitment
scheme (S, R). The IP proceeds as follows:

1. Pscor finds the 3-Coloring « for G.

2. PscoL samples a permutation 7 on [3] (the set of colors).

Pscor computes the new 3-Coloring 8 = 7w o a.
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Pscor samples keys skq, sko, . .. sky,.

PscoL computes the commitment message ¢; = S(lk, sk;, B(1)) for each i.

ot

P3c0o1, sends ¢ = [Cl, Co,y ... Cn] to Vacor.
Vacor samples an edge (u,v) < FE.

V3cor, sends (u,v) to P3coL-
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Pscor, returns sk, sk, to Vacor.
10. Vacor computes Yo = R(1¥, sky, ¢,), and x, = R(1¥, sky, ¢,).

11. VacoL checks whether x,, # xv, and X, Xo € [3]-

This IP construction is complete and sound, with acceptance probability < 1 — I—l‘
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Theorem 2 (Pscor, Vacor) is CZK (assuming that (S, R) is secure).

Here we present a partial proof of the Theorem, to be completed in the next lecture.

We construct a simulator S with black box access to some verifier V*. For some G € 3COL,

the steps for computing SV (G) are as follows:

1. Sample a random tape ry« for V*.

2. Sample a random coloring « : [n] — [3].
3. Sample keys skq, ... sky,.

4. Compute ¢; = S(1*, sk;,~v(i)) for each 1.

5. Obtain (u,v) from sending the commitment vector ¢ to V*(G,ry~).

6. If y(u) = vy(v), go back to step 1.
7. Output (ry-, & (u, ), (shu, k).

We will now analyze this simulator. Suppose by way of contradiction that there exists probabilistic
polynomial time distinguisher D that distinguishes SV (G) from VIEWy-((Pscor, V*)(G)) with

probability §(k).
Let &= v+) denote the event V* outputs (u*,v*).
Now, by averaging, there exists (u*,v*) € E such that
P’/‘[D(SV* (G)) =1A g(u*,v*)] — P?“[D(VIEWV*(<P3COL, V*>(G))) =1A g(u*,v*)] >

Now given this D, we can construct an attacker A that attacks (S, R).

To compute A(g,a)((da,i)ac(3),icn]) given a graph G, a 3-Coloring «a, the attacker attacks the de-

commitment message d in the following steps:

1. Pick a random permutation = : [3] — [3].

2. Sample sk, sky».

3. Construct the commitment vector
. {5‘(1k,ski,7r(a(i))) if (i = u*) V (i = v)
L A (i) otherwise

4. Give ¢ to V*(G), obtain (u,v).

5. If (u,v) # (u*,v*), output 0.

6. Output D(C, (u*,v*), (skyx, Sky)).

The idea here is that d can either be a commitment to the string with the pattern "123123123..."
repeated n times, in which case it corresponds to D(VIEWy ), or it is a commitment to 3n i.i.d.

random samples from [3], in which case it corresponds to D(SV").
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Lemma 3
Pr[A(123-challenge) = 1] = Pr[D(VIEWy«) = 1 A Egyx )]

Lemma 4

Pr[A(random challenge) = 1] — Pr[D(SV*) = 1A Epr ]| < 5?2

We want to show that
| Pr[A(123-challenge) = 1] — Pr[A(random challenge) = 1]|

is non negligible. Using the triangle equality (|]z —y| > ||| — |y||) and the above two lemmas, we
can reformulate the statement above as
0(k) | o (k)

* k
: 14
PT‘[D(VIQWV*) =1 /\g(u*,v*)] — PT[D(S ) =1A g(u*,v*)} + m Z 2‘7E

Proof of Lemma 4: Given v : [n] — [3], define ¢, to be the probability that (), outputs 1, where
Q- (1%) is computed as follows:

1. Sample skq,...sk,.

2. Compute ¢; = S(lk, sk, v(1)).

3. Send ¢ to V*(G) to obtain (u,v).

4. Output 1 iff (u,v) = (u*,v*), v(u*) = v(v*), and D(C, (u*,v*), (Sky*, sky=)) = 1.

Now we can rewrite
¢ 31
Pr[A d hall =1 = olNan—2 93n
r[A(random challenge) ] Z 2(3)37%2 Z g3t
v | v(ur)FEy(vr) T2 v | vy (v)

Now we want to rewrite

Pr(D(SY") = 1A Ee )]

First we see that, for a particular transcript tr,

[e.9]
Pr[SY" outputs tr] = Z Pr[SY outputs tr at round i
i=1

= Z Pr[SY outputs tr at round 1]Pr[i-1 retries]

1 *
= ——————Pr[S" outputs tr at d1
Pr[do not retry] l outputs tr at round 1]

Here the last step is obtained by convergence of geometric series. This allows us to rewrite

* 1 *
PrD(SY") = 1A Eueomy] = Z mPr[SV outputs tr at round 1]Pr[D(tr) = 1]
tr with(u*,v*)

1 1
~ Pr[do not retry] Z gn
v [y (u)7#y(v*)
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