CS276: Cryptography

November 3, 2015

Computational Zero Knowledge for NP

Instructor: Alessandro Chiesa

Scribe: Praagya Singh

1 Introduction

Fact 1 SZK \subseteq AM \cap c_0 AM. The right hand side is unlikely to contain NP.

In this lecture we will propose an interactive proof system for the 3-coloring graph problem (which we know to be NP-complete), and we will begin the proof that shows that our interactive proof system is computational zero-knowledge. So we will try to show NP \subseteq CZK - (note that given Fact 1, here we have to relax statistical zero knowledge to computational zero knowledge).

2 IP System for 3-Coloring

Recall that 3-Coloring is defined as the language of graphs

 $\{G \mid \exists \text{ 3-coloring } \alpha : [n] \rightarrow [3] \text{ of } G\}$

Now we present our proposed IP construction for the 3-Coloring problem. We have a prover-verifier pair $(P_{3\text{COL}}, V_{3\text{COL}})$. We also have a computationally hiding, statistically binding commitment scheme (\tilde{S}, \tilde{R}) . The IP proceeds as follows:

- 1. $P_{3\text{COL}}$ finds the 3-Coloring α for G.
- 2. $P_{3\text{COL}}$ samples a permutation π on [3] (the set of colors).
- 3. $P_{3\text{COL}}$ computes the new 3-Coloring $\beta = \pi \circ \alpha$.
- 4. P_{3COL} samples keys $sk_1, sk_2, \ldots sk_n$.
- 5. $P_{3\text{COL}}$ computes the commitment message $c_i = \tilde{S}(1^k, sk_i, \beta(i))$ for each *i*.
- 6. $P_{3\text{COL}}$ sends $\vec{c} = [c_1, c_2, \dots c_n]$ to $V_{3\text{COL}}$.
- 7. $V_{3\text{COL}}$ samples an edge $(u, v) \leftarrow E$.
- 8. V_{3COL} sends (u, v) to P_{3COL} .
- 9. $P_{3\text{COL}}$ returns sk_u, sk_v to $V_{3\text{COL}}$.
- 10. $V_{3\text{COL}}$ computes $\chi_u = \tilde{R}(1^k, sk_u, c_u)$, and $\chi_v = \tilde{R}(1^k, sk_v, c_v)$.
- 11. $V_{3\text{COL}}$ checks whether $\chi_u \neq \chi_v$, and $\chi_u, \chi_v \in [3]$.

This IP construction is complete and sound, with acceptance probability $\leq 1 - \frac{1}{|E|}$.

Theorem 2 (P_{3COL}, V_{3COL}) is CZK (assuming that (\tilde{S}, \tilde{R}) is secure).

Here we present a partial proof of the Theorem, to be completed in the next lecture.

We construct a simulator S with black box access to some verifier V^* . For some $G \in 3$ COL, the steps for computing $S^{V^*}(G)$ are as follows:

- 1. Sample a random tape r_{V^*} for V^* .
- 2. Sample a random coloring $\gamma : [n] \to [3]$.
- 3. Sample keys $sk_1, \ldots sk_n$.
- 4. Compute $c_i = \tilde{S}(1^k, sk_i, \gamma(i))$ for each *i*.
- 5. Obtain (u, v) from sending the commitment vector \vec{c} to $V^*(G, r_{V^*})$.
- 6. If $\gamma(u) = \gamma(v)$, go back to step 1.
- 7. Output $(r_{V^*}, \vec{c}, (u, v), (sk_u, sk_v))$.

We will now analyze this simulator. Suppose by way of contradiction that there exists probabilistic polynomial time distinguisher D that distinguishes $S^{V^*}(G)$ from $\operatorname{VIEW}_{V^*}(\langle P_{3\mathrm{COL}}, V^* \rangle(G))$ with probability $\delta(k)$.

Let $\mathcal{E}_{(u^*,v^*)}$ denote the event V^* outputs (u^*,v^*) . Now, by averaging, there exists $(u^*,v^*) \in E$ such that

$$\left| \Pr[D(S^{V^*}(G)) = 1 \land \mathcal{E}_{(u^*,v^*)}] - \Pr[D(\operatorname{VIEW}_{V^*}(\langle P_{3\operatorname{COL}}, V^* \rangle(G))) = 1 \land \mathcal{E}_{(u^*,v^*)}] \right| \ge \frac{\delta(k)}{|E|}$$

Now given this D, we can construct an attacker A that attacks (\tilde{S}, \tilde{R}) .

To compute $A_{(G,\alpha)}((d_{a,i})_{a \in [3], i \in [n]})$ given a graph G, a 3-Coloring α , the attacker attacks the decommitment message d in the following steps:

- 1. Pick a random permutation $\pi : [3] \to [3]$.
- 2. Sample sk_{u^*}, sk_{v^*} .
- 3. Construct the commitment vector

$$c_i = \begin{cases} \tilde{S}(1^k, sk_i, \pi(\alpha(i))) & \text{if } (i = u^*) \lor (i = v^*) \\ d_{\pi(\alpha(i))} & \text{otherwise} \end{cases}$$

- 4. Give \vec{c} to $V^*(G)$, obtain (u, v).
- 5. If $(u, v) \neq (u^*, v^*)$, output 0.
- 6. Output $D(\vec{c}, (u^*, v^*), (sk_{u^*}, sk_{v^*}))$.

The idea here is that d can either be a commitment to the string with the pattern "123123123..." repeated n times, in which case it corresponds to $D(\text{VIEW}_{V^*})$, or it is a commitment to 3n i.i.d. random samples from [3], in which case it corresponds to $D(S^{V^*})$.

Lemma 3

$$Pr[A(123\text{-}challenge) = 1] = Pr[D(\text{VIEW}_{V^*}) = 1 \land \mathcal{E}_{(u^*,v^*)}]$$

Lemma 4

$$\left| Pr[A(random \ challenge) = 1] - Pr[D(S^{V^*}) = 1 \land \mathcal{E}_{(u^*, v^*)}] \right| \le \frac{\delta(k)}{2|E|}$$

We want to show that

$$|Pr[A(123\text{-challenge}) = 1] - Pr[A(\text{random challenge}) = 1]|$$

is non negligible. Using the triangle equality $(|x - y| \ge ||x| - |y||)$ and the above two lemmas, we can reformulate the statement above as

$$Pr[D(\operatorname{View}_{V^*}) = 1 \wedge \mathcal{E}_{(u^*, v^*)}] - Pr[D(S^{V^*}) = 1 \wedge \mathcal{E}_{(u^*, v^*)}] \pm \frac{\delta(k)}{2|E|} \ge \frac{\delta(k)}{2|E|}$$

Proof of Lemma 4: Given $\gamma : [n] \to [3]$, define q_{γ} to be the probability that Q_{γ} outputs 1, where $Q_{\gamma}(1^k)$ is computed as follows:

- 1. Sample $sk_1, \ldots sk_n$.
- 2. Compute $c_i = \tilde{S}(1^k, sk_i, \gamma(i)).$
- 3. Send \vec{c} to $V^*(G)$ to obtain (u, v).
- 4. Output 1 iff $(u, v) = (u^*, v^*), \ \gamma(u^*) = \gamma(v^*), \ \text{and} \ D(\vec{c}, (u^*, v^*), (sk_{u^*}, sk_{v^*})) = 1.$

Now we can rewrite

$$Pr[A(\text{random challenge}) = 1] = \sum_{\gamma \mid \gamma(u^*) \neq \gamma(v^*)} \frac{q_{\gamma}}{2\binom{3}{2}3^{n-2}} = \sum_{\gamma \mid \gamma(u^*) \neq \gamma(v^*)} \frac{3}{2} \frac{1}{3^n} q_{\gamma}$$

Now we want to rewrite

$$Pr[D(S^{V^*}) = 1 \land \mathcal{E}_{(u^*, v^*)}]$$

First we see that, for a particular transcript tr,

$$Pr[S^{V^*} \text{ outputs tr}] = \sum_{i=1}^{\infty} Pr[S^{V^*} \text{ outputs tr at round i}]$$
$$= \sum_{i=1}^{\infty} Pr[S^{V^*} \text{ outputs tr at round 1}]Pr[\text{i-1 retries}]$$
$$= \frac{1}{Pr[\text{do not retry}]} Pr[S^{V^*} \text{ outputs tr at round 1}]$$

Here the last step is obtained by convergence of geometric series. This allows us to rewrite

$$\begin{aligned} Pr[D(S^{V^*}) &= 1 \land \mathcal{E}_{(u^*,v^*)}] = \sum_{\text{tr with}(u^*,v^*)} \frac{1}{Pr[\text{do not retry}]} Pr[S^{V^*} \text{outputs tr at round } 1] Pr[D(\text{tr}) = 1] \\ &= \frac{1}{Pr[\text{do not retry}]} \sum_{\gamma \mid \gamma(u^*) \neq \gamma(v^*)} \frac{1}{3^n} q_{\gamma} \end{aligned}$$