
CS276: Cryptography November 3, 2015

Computational Zero Knowledge for NP
Instructor: Alessandro Chiesa Scribe: Praagya Singh

1 Introduction

Fact 1 SZK ⊆ AM ∩ c0AM. The right hand side is unlikely to contain NP.

In this lecture we will propose an interactive proof system for the 3-coloring graph problem (which
we know to be NP-complete), and we will begin the proof that shows that our interactive proof
system is computational zero-knowledge. So we will try to show NP ⊆ CZK - (note that given Fact
1, here we have to relax statistical zero knowledge to computational zero knowledge).

2 IP System for 3-Coloring

Recall that 3-Coloring is defined as the language of graphs

{G | ∃ 3-coloring α : [n]→ [3] of G}

Now we present our proposed IP construction for the 3-Coloring problem. We have a prover-verifier
pair (P3COL, V3COL). We also have a computationally hiding, statistically binding commitment
scheme (S̃, R̃). The IP proceeds as follows:

1. P3COL finds the 3-Coloring α for G.

2. P3COL samples a permutation π on [3] (the set of colors).

3. P3COL computes the new 3-Coloring β = π ◦ α.

4. P3COL samples keys sk1, sk2, . . . skn.

5. P3COL computes the commitment message ci = S̃(1k, ski, β(i)) for each i.

6. P3COL sends ~c = [c1, c2, . . . cn] to V3COL.

7. V3COL samples an edge (u, v)← E.

8. V3COL sends (u, v) to P3COL.

9. P3COL returns sku, skv to V3COL.

10. V3COL computes χu = R̃(1k, sku, cu), and χv = R̃(1k, skv, cv).

11. V3COL checks whether χu 6= χv, and χu, χv ∈ [3].

This IP construction is complete and sound, with acceptance probability ≤ 1− 1
|E| .

20-1

Theorem 2 (P3COL, V3COL) is CZK (assuming that (S̃, R̃) is secure).

Here we present a partial proof of the Theorem, to be completed in the next lecture.

We construct a simulator S with black box access to some verifier V ∗. For some G ∈ 3COL,
the steps for computing SV

∗
(G) are as follows:

1. Sample a random tape rV ∗ for V ∗.

2. Sample a random coloring γ : [n]→ [3].

3. Sample keys sk1, . . . skn.

4. Compute ci = S̃(1k, ski, γ(i)) for each i.

5. Obtain (u, v) from sending the commitment vector ~c to V ∗(G, rV ∗).

6. If γ(u) = γ(v), go back to step 1.

7. Output (rV ∗ ,~c, (u, v), (sku, skv)).

We will now analyze this simulator. Suppose by way of contradiction that there exists probabilistic
polynomial time distinguisher D that distinguishes SV

∗
(G) from ViewV ∗(〈P3COL, V

∗〉(G)) with
probability δ(k).
Let E(u∗,v∗) denote the event V ∗ outputs (u∗, v∗).
Now, by averaging, there exists (u∗, v∗) ∈ E such that∣∣∣Pr[D(SV

∗
(G)) = 1 ∧ E(u∗,v∗)]− Pr[D(ViewV ∗(〈P3COL, V

∗〉(G))) = 1 ∧ E(u∗,v∗)]
∣∣∣ ≥ δ(k)

|E|

Now given this D, we can construct an attacker A that attacks (S̃, R̃).
To compute A(G,α)((da,i)a∈[3],i∈[n]) given a graph G, a 3-Coloring α, the attacker attacks the de-
commitment message d in the following steps:

1. Pick a random permutation π : [3]→ [3].

2. Sample sku∗ , skv∗ .

3. Construct the commitment vector

ci =

{
S̃(1k, ski, π(α(i))) if (i = u∗) ∨ (i = v∗)

dπ(α(i)) otherwise

4. Give ~c to V ∗(G), obtain (u, v).

5. If (u, v) 6= (u∗, v∗), output 0.

6. Output D(~c, (u∗, v∗), (sku∗ , skv∗)).

The idea here is that d can either be a commitment to the string with the pattern "123123123 . . . "
repeated n times, in which case it corresponds to D(ViewV ∗), or it is a commitment to 3n i.i.d.
random samples from [3], in which case it corresponds to D(SV

∗
).

20-2

Lemma 3
Pr[A(123-challenge) = 1] = Pr[D(ViewV ∗) = 1 ∧ E(u∗,v∗)]

Lemma 4 ∣∣∣Pr[A(random challenge) = 1]− Pr[D(SV
∗
) = 1 ∧ E(u∗,v∗)]

∣∣∣ ≤ δ(k)

2 |E|

We want to show that

|Pr[A(123-challenge) = 1]− Pr[A(random challenge) = 1]|

is non negligible. Using the triangle equality (|x − y| ≥ ||x| − |y||) and the above two lemmas, we
can reformulate the statement above as∣∣∣∣Pr[D(ViewV ∗) = 1 ∧ E(u∗,v∗)]− Pr[D(SV

∗
) = 1 ∧ E(u∗,v∗)]±

δ(k)

2|E|

∣∣∣∣ ≥ δ(k)

2|E|

Proof of Lemma 4: Given γ : [n]→ [3], define qγ to be the probability that Qγ outputs 1, where
Qγ(1

k) is computed as follows:

1. Sample sk1, . . . skn.

2. Compute ci = S̃(1k, ski, γ(i)).

3. Send ~c to V ∗(G) to obtain (u, v).

4. Output 1 iff (u, v) = (u∗, v∗), γ(u∗) = γ(v∗), and D(~c, (u∗, v∗), (sku∗ , skv∗)) = 1.

Now we can rewrite

Pr[A(random challenge) = 1] =
∑

γ | γ(u∗)6=γ(v∗)

qγ

2
(
3
2

)
3n−2

=
∑

γ | γ(u∗)6=γ(v∗)

3

2

1

3n
qγ

Now we want to rewrite
Pr[D(SV

∗
) = 1 ∧ E(u∗,v∗)]

First we see that, for a particular transcript tr,

Pr[SV
∗
outputs tr] =

∞∑
i=1

Pr[SV
∗
outputs tr at round i]

=

∞∑
i

Pr[SV
∗
outputs tr at round 1]Pr[i-1 retries]

=
1

Pr[do not retry]
Pr[SV

∗
outputs tr at round 1]

Here the last step is obtained by convergence of geometric series. This allows us to rewrite

Pr[D(SV
∗
) = 1 ∧ E(u∗,v∗)] =

∑
tr with(u∗,v∗)

1

Pr[do not retry]
Pr[SV

∗
outputs tr at round 1]Pr[D(tr) = 1]

=
1

Pr[do not retry]

∑
γ | γ(u∗)6=γ(v∗)

1

3n
qγ

�

20-3

